
Universal CMDB
Software Version: 10.33

Developer Reference Guide

Document Release Date: July 2017
Software Release Date: July 2017

Legal Notices

Disclaimer
Certain versions of software and/or documents (“Material”) accessible heremay contain branding from Hewlett-Packard Company (now HP Inc.) and Hewlett Packard
Enterprise Company. As of September 1, 2017, theMaterial is now offered by Micro Focus, a separately owned and operated company. Any reference to the HP and Hewlett
Packard Enterprise/HPEmarks is historical in nature, and the HP and Hewlett Packard Enterprise/HPEmarks are the property of their respective owners.

Warranty
The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or editorial errors or
omissions contained herein. The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Except as specifically indicated otherwise, a valid license from Micro Focus is required for possession, use or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor's standard commercial license.

Copyright Notice
© 2002 - 2017Micro Focus or one of its affiliates.

Trademark Notices
MICRO FOCUS and theMicro Focus logo, among others, are trademarks or registered trademarks of Micro Focus (IP) Limited or its subsidiaries in the United Kingdom,
United States and other countries. All other marks are the property of their respective owners.

Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® andWindows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of TheOpenGroup.

Documentation Updates
To check for recent updates or to verify that you are using themost recent edition of a document, go to: https://softwaresupport.softwaregrp.com.

This site requires that you register for a Software Passport and to sign in. To register for a Software Passport ID, click Register for Software Passport on theMicro Focus
Support website at https://softwaresupport.softwaregrp.com.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your Micro Focus sales representative for details.

Support
Visit theMicro Focus Support site at: https://softwaresupport.softwaregrp.com.

This website provides contact information and details about the products, services, and support that Micro Focus offers.

Micro Focus online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools needed tomanage your
business. As a valued support customer, you can benefit by using the support website to:
l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look upMicro Focus support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as a Software Passport user and to sign in. Many also require a support contract. To register for a Software Passport ID,
click Register for Software Passport on theMicro Focus Support website at https://softwaresupport.softwaregrp.com.

To findmore information about access levels, go to: https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels.

Integration Catalog accesses theMicro Focus Integration Catalog website. This site enables you to exploreMicro Focus Product Solutions tomeet your business needs,
includes a full list of Integrations betweenMicro Focus Products, as well as a listing of ITIL Processes. The URL for this website is
https://softwaresupport.softwaregrp.com/km/KM01702731.

About this PDF Version of Online Help
This document is a PDF version of the online help. This PDF file is provided so you can easily print multiple topics from the help information or read the online help in PDF
format. Because this content was originally created to be viewed as online help in a web browser, some topics may not be formatted properly. Some interactive topics may not
be present in this PDF version. Those topics can be successfully printed from within the online help.

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 2 of 503

https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels
https://softwaresupport.softwaregrp.com/km/KM01702731

Contents
Part I: Creating Discovery and Integration Adapters 18

Chapter 1: Adapter Development and Writing 19
Adapter Development and Writing Overview 19
Content Creation 20

The Adapter Development Cycle 20
Data Flow Management and Integration 23
Associating Business Value with Discovery Development 24
Researching Integration Requirements 25

Developing Integration Content 28
Developing Discovery Content 31

Discovery Adapters and Related Components 31
Separating Adapters 32

Implement a Discovery Adapter 33
Step 1: Create an Adapter 35
Step 2: Assign a Job to the Adapter 42
Step 3: Create Jython Code 43
Configure Remote Process Execution 44

Chapter 2: Developing Jython Adapters 46
HPE Data Flow Management API Reference 46
Create Jython Code 46

Use External Java JAR Files within Jython 47
Execution of the Code 47
Modifying Out-of-the-Box Scripts 48
Structure of the Jython File 48

Imports 49
Main Function – DiscoveryMain 49
Functions Definition 50

Results Generation by the Jython Script 51
The ObjectStateHolder Syntax 51
Sending Large Amounts of Data 53

The Framework Instance 54
Finding the Correct Credentials (for Connection Adapters) 57

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 3 of 503

Handling Exceptions from Java 60
Troubleshooting Migration from Jython Version 2.1 to 2.5.3 60

Support Localization in Jython Adapters 62
Add Support for a New Language 63
Change the Default Language 64
Determine the Character Set for Encoding 65
Define a New Job to Operate With Localized Data 65
Decode Commands Without a Keyword 67
Work with Resource Bundles 67
API Reference 68

Record DFM Code 71
Jython Libraries and Utilities 72

Chapter 3: Error Messages 76
Error Messages Overview 76
Error-Writing Conventions 76
Error Severity Levels 80

Chapter 4: Mapping Consumer-Provider Dependencies 82
Dependency Discovery Overview 82

Providers and Consumers 83
Service Connection Point 83
Configuration Signatures 84
Dependency Mapping Flow 84

Configuration Signature Files 87
Structure of a Configuration Signature File 87
Variables 88

Search Connection Strings 91
Search connection strings from command line 91
Search connection strings from configuration documents 92
Generate Service Connection Points 96

Chapter 5: Developing Generic Database Adapters 98
Generic Database Adapter Overview 99
TQL Queries for the Generic Database Adapter 99
Reconciliation 100
Hibernate as JPA Provider 101
Prepare for Adapter Creation 103
Prepare the Adapter Package 107

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 4 of 503

Configure the Adapter – Minimal Method 110
Configure the adapter.conf File 111
Example: Populating a Node and IP Address using the Simplified
Method 111

Configure the Adapter – Advanced Method 115
Implement a Plug-in 119
Deploy the Adapter 122
Edit the Adapter 122
Create an Integration Point 123
Create a View 123
Calculate the Results 123
View the Results 124
View Reports 124
Enable Log Files 124
Use Eclipse to Map Between CIT Attributes and Database Tables 124
Adapter Configuration Files 132

The adapter.conf File 134
The simplifiedConfiguration.xml File 135
The orm.xml File 138
The reconciliation_types.txt File 151
The reconciliation_rules.txt File (for backwards compatibility) 151
The transformations.txt File 153
The discriminator.properties File 154
The replication_config.txt File 155
The fixed_values.txt File 156
The Persistence.xml File 156

Connect to Database Using NT Authentication 157
Configure the Persistence.xml File for the SCCM Integration to
Use NTLM Authentication 158

Out-of-the-Box Converters 159
Plug-ins 165
Configuration Examples 165
Adapter Log Files 174
External References 176
Troubleshooting and Limitations – Developing Generic Database
Adapters 176

Chapter 6: Developing Java Adapters 178

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 5 of 503

Federation Framework Overview 178
Adapter and Mapping Interaction with the Federation Framework 183
Federation Framework for Federated TQL Queries 184
Interactions between the Federation Framework, Server, Adapter, and
Mapping Engine 185
Federation Framework Flow for Population 195
Adapter Interfaces 196
Debug Adapter Resources 198
Add an Adapter for a New External Data Source 199
Create a Sample Adapter 207
XML Configuration Tags and Properties 208
The DataAdapterEnvironment Interface 210

OutputStream openResourceForWriting(String resourceName)
throws FileNotFoundException; 210
InputStream openResourceForReading(String resourceName)
throws FileNotFoundException; 211
Properties openResourceAsProperties(String propertiesFile) throws
IOException; 211
String openResourceAsString(String resourceName) throws
IOException; 212
public void saveResourceFromString(String relativeFileName,
String value) throws IOException; 213
boolean resourceExists(String resourceName); 213
boolean deleteResource(String resourceName); 214
Collection<String> listResourcesInPath(String path); 214
DataAdapterLogger getLogger(); 214
DestinationConfig getDestinationConfig(); 215
int getChunkSize(); 215
int getPushChunkSize(); 215
ClassModel getLocalClassModel(); 215
CustomerInformation getLocalCustomerInformation(); 216
Object getSettingValue(String name); 216
Map<String, Object> getAllSettings(); 216
boolean isMTEnabled(); 216
String getUcmdbServerHostName(); 217

Chapter 7: Developing Push Adapters 218
Developing and Deploying Push Adapters 218

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 6 of 503

Build an Adapter Package 219
Troubleshooting 222
TQL Best Practices for Push Adapters 223

Create Mappings 223
Build a Mapping File 223
Prepare the Mapping Files 224

Write Jython Scripts 227
Support Differential Synchronization 231
Generic XML Push Adapter SQL Queries 233
Generic Web Service Push Adapter 233
Mapping File Reference 253
Mapping File Schema 256
Mapping Results Schema 264
Customization 267

Chapter 8: Developing Generic Adapters 269
Instance Sync 269
Achieving Data Push using the Generic Adapter 269

Push Overview 270
The Mapping File 270
The Groovy Traveler 273
Write Groovy Scripts 277
Implement PushAdapterConnector Interface 277

Achieving Data Population using the Generic Adapter 279
The Population Framework Architecture 279
Main Artifacts involved in Population 280

Population TQL Queries 281
Population Mapping Files 281
Automatic Link Population 284
Manual Link Population 285
The Population Connector 286

Population Request Input 288
Population Request Output 291

Population Adapter Modes 292
Explicit External ID Mapping 293
Global ID Pushback 294

Achieving Data Federation using the Generic Adapter 295

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 7 of 503

Federation Mapping Approach 295
Generic Adapter Federation API 296

Generic Adapter Connector Interface for Federation 298
Supported Federation Queries 299

How to Set Up Federation 299
Configure the Adapter Settings 300
Set Up Static Federation TQL Queries 300
Federation Setup Example 303

Sample Data 309
Incident Federation 310
Incident Related to Node Federation 312
Incident Related to Node and Business Service Federation 314

Mapping Conventions 315
Reconciliation 316
Generic Adapter API 316
Resource Locator APIs 316
Create a Generic Adapter Package 317

Build an Adapter Package 319
Population TQL Queries 320
Sample Package 321

Differences Between Push and Population Mapping 323
How to Troubleshoot and Debug Using Generic Adapter Log Files 323
Adapters Using the Generic Adapter Framework 324
Generic Adapter XML Schema Reference 324

Part II: Using APIs 326
Chapter 9: Introduction to APIs 327

APIs Overview 327
Chapter 10: Universal CMDB API 328

Conventions 328
Using the Universal CMDB API 328
General Structure of an Application 330
Put the API Jar File in the Classpath 332
Create an Integration User 332
UCMDB API Use Cases 335
Performance Improvement with a Bidirectional GlobalID - UcmdbID
Mapping Cache 336

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 8 of 503

Examples 338
Chapter 11: Universal CMDB Web Service API 339

Conventions 339
Micro Focus Universal CMDB (UCMDB) Web Service API Overview 340
Getting Started with Universal CMDB Web Service 343

How to Generate the Java Web Service Client Jar 343
How to Write a Simple Java Web Service Client for UCMDB 344

Call the Universal CMDB Web Service 345
Query the CMDB 345
Update the CMDB 349
Query the UCMDB Class Model 350

getClassAncestors 351
getAllClassesHierarchy 351
getCmdbClassDefinition 352

Query for Impact Analysis 353
UCMDB General Parameters 353
UCMDB Output Parameters 356
UCMDB Query Methods 357

executeTopologyQueryByNameWithParameters 358
executeTopologyQueryWithParameters 359
getChangedCIs 360
getCINeighbours 361
getCIsByID 361
getCIsByType 362
getFilteredCIsByType 363
getQueryNameOfView 366
getTopologyQueryExistingResultByName 367
getTopologyQueryResultCountByName 367
pullTopologyMapChunks 368
releaseChunks 369

UCMDB Update Methods 370
addCIsAndRelations 370
addCustomer 371
deleteCIsAndRelations 372
removeCustomer 372
updateCIsAndRelations 372

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 9 of 503

UCMDB Impact Analysis Methods 373
calculateImpact 373
getImpactPath 374
getImpactRulesByNamePrefix 375

Actual State Web Service API 375
UCMDB Web Service API Use Cases 377
Examples 379

Chapter 12: Universal CMDB REST API 380
Deployment and Configuration 380

Standalone Deployment 380
Configuration 381

Using the REST API 382
Authorization 382
REST API Endpoint 383
Tips 383
A Usage Example 384
Generate Customizable Change Report 385

Overview 385
How to Use 386

Step By Step: How to Retrieve CIs Using REST API 386
Reference 393

Authenticate 394
URL 394
Method 394
Headers 394
Request type 394
Response type 394
URL Parameters 394
Payload 395
Success response 395
Error response 395
Notes 396

Sample Data Model 396
URL 396
Method 396
Headers 396

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 10 of 503

Request type 396
Response type 397
URL Parameters 397
Payload 397
Success response 397
Error response 398

Insert Topology 399
URL 399
Method 399
Headers 399
Request type 399
Response type 399
URL Parameters 400
Payload 400
Success response 401
Error response 402
Note 403

Get CI 403
URL 403
Method 403
Headers 403
Request type 404
Response type 404
URL Parameters 404
Payload 404
Call example 404
Success response 404
Error response 406
Note 406

Update CI 406
URL 406
Method 407
Headers 407
Request type 407
Response type 407
URL Parameters 407

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 11 of 503

Payload 408
Success response 409
Error response 410
Note 410

Delete CI 410
URL 410
Method 410
Headers 411
Request type 411
Response type 411
URL Parameters 411
Payload 411
Success response 412
Error response 412
Note 413

Generate Change Report 413
URL 413
Method 413
Headers 413
Request type 414
Response type 414
URL Parameters 414
Payload 414
Success response 415
Error response 418

Get Related CIs 418
URL 418
Method 418
Headers 418
Request type 418
Response type 419
URL Parameters 419
Payload 419
Success response 419
Error response 420
Note 421

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 12 of 503

Get Relation 421
URL 421
Method 421
Headers 421
Request type 422
Response type 422
URL Parameters 422
Payload 422
Call example 422
Success response 423
Error response 424
Note 424

Update Relation 425
URL 425
Method 425
Headers 425
Request type 425
Response type 425
URL Parameters 426
Payload 426
Success response 427
Error response 428
Note 428

Delete Relation 428
URL 429
Method 429
Headers 429
Request type 429
Response type 429
URL Parameters 429
Payload 430
Success response 430
Error response 431
Note 431

Sample Topology Query 431
URL 431

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 13 of 503

Method 431
Headers 432
Request type 432
Response type 432
URL Parameters 432
Payload 432
Success response 432
Error response 434

Execute Query By Name 434
URL 435
Method 435
Headers 435
Request type 435
Response type 435
URL Parameters 435
Payload 436
Success response 436
Error response 437
Note 437

Execute Query By Definition 437
URL 437
Method 438
Headers 438
Request type 438
Response type 438
URL Parameters 438
Payload 438
Success response 441
Error response 442
Note 443

Run Impact Analysis 443
URL 443
Method 443
Headers 443
Request type 443
Response type 444

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 14 of 503

URL Parameters 444
Payload 444
Success response 445
Error response 446

Multiple CMDB Calls 446
Converting UCMDB IDs to Global Ids 446

URL 446
Method 446
Headers 446
Request type 447
Response type 447
URL Parameters 447
Payload 447
Success response 447
Error response 448
Notes 448

Converting Global IDs to UCMDB IDs 448
URL 448
Method 448
Headers 449
Request type 449
Response type 449
URL Parameters 449
Payload 449
Success response 449
Error response 450
Notes 451

History Changes 451
Get Removed CIs 451

URL 451
Method 451
Headers 451
Request type 451
Response type 451
URL Parameters 452
Payload 452

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 15 of 503

Success response 452
Error response 452

Get Changes 453
URL 453
Method 453
Headers 453
Request type 453
Response type 454
URL Parameters 454
Payload 454
Success response 454
Error response 457

Get Data Layout 458
URL 458
Method 458
Headers 458
Request type 458
Response type 458
URL Parameters 458
Payload 459
Success response 459
Error response 460

Chapter 13: Data Flow Management Java API 461
Using the Data Flow Management Java API 461
IP Range Management API 462

Sample Script for IP Range Management API 463
Chapter 14: Data Flow Management Web Service API 466

Data Flow Management Web Service API Overview 466
Conventions 467
Creating the Web Service Client 467
Call the Micro Focus Data Flow Management Web Service 468
Data Flow Management Methods and Data Structures 468

Data Structures 469
Managing Discovery Job Methods 470
Managing Trigger Methods 472
Domain and Probe Data Methods 474

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 16 of 503

Credentials Data Methods 477
Data Refresh Methods 479

Code Samples 481
Managing Discovery Job Methods 481
Managing Trigger Methods 485
Domain and Probe Data Methods 489
Credentials Data Methods 493
Data Refresh Methods 499

Send documentation feedback 503

Developer ReferenceGuide

Micro Focus Universal CMDB (10.33) Page 17 of 503

Micro Focus Universal CMDB (10.33) Page 18 of 503

Part I: Creating Discovery and Integration
Adapters

Chapter 1: Adapter Development and Writing
This chapter includes:

Adapter Development andWriting Overview 19

Content Creation 20

Developing Integration Content 28

Developing Discovery Content 31

Implement a Discovery Adapter 33

Step 1: Create an Adapter 35

Step 2: Assign a Job to the Adapter 42

Step 3: Create Jython Code 43

Configure Remote Process Execution 44

Adapter Development and Writing Overview
Prior to beginning actual planning for development of new adapters, it is important for you to understand
the processes and interactions commonly associated with this development.

The following sections can help you understand what you need to know and do to successfully manage
and execute a discovery development project.

This chapter:

l Assumes a working knowledge of Universal CMDB and some basic familiarity with the elements of
the system. It is meant to assist you in the learning process and does not provide a complete guide.

l Covers the stages of planning, research, and implementation of new discovery content for
Universal CMDB, together with guidelines and considerations that need to be taken into account.

l Provides information on the key APIs of the Data Flow Management Framework. For full
documentation on the available APIs, see theHPE Universal CMDB Data Flow Management API
Reference. (Other non-formal APIs exist but even though they are used on out-of-the-box adapters,
they may be subject to change.)

Micro Focus Universal CMDB (10.33) Page 19 of 503

Content Creation
This section includes:

l "The Adapter Development Cycle" below

l "Data Flow Management and Integration" on page 23

l "Associating Business Value with Discovery Development" on page 24

l "Researching Integration Requirements" on page 25

The Adapter Development Cycle

The following illustration shows a flowchart for adapter writing. Most of the time is spent in themiddle
section, which is the iterative loop of development and testing.

Each phase of adapter development builds on the last one.

Once you are satisfied with the way the adapter looks and works, you are ready to package it. Using
either the UCMDB PackageManager or manual exporting of the components, create a package *.zip
file. As a best practice, you should deploy and test this package on another UCMDB system before
releasing it to production, to ensure that all the components are accounted for and successfully
packaged. For details on packaging, see PackageManager in theUniversal CMDB Administration
Guide.

The following sections expand on each of the phases, showing themost critical steps and best
practices:

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 20 of 503

l "Research and Preparation Phase" below

l "Adapter Development and Testing" on the next page

l "Adapter Packaging and Productization " on the next page

Research and Preparation Phase

The Research and Preparation phase encompasses the driving business needs and use cases, and
also accounts for securing the necessary facilities to develop and test the adapter.

1. When planning tomodify an existing adapter, the first technical step is to make a backup of that
adapter and ensure you can return it to its pristine state. If you plan to create a new adapter, copy
themost similar adapter and save it under an appropriate name. For details, see Resources Pane
in theUniversal CMDB Data Flow Management Guide.

2. Research themethod which the adapter should use to collect data:

o Use external tools/protocols to obtain the data

o Develop how the adapter should create CIs based on the data

o You now know what a similar adapter should look like

3. Determinemost similar adapter based on:

o SameCIs created

o SameProtocols used (SNMP)

o Same kind of targets (by OS type, versions, and so on)

4. Copy the entire package.

5. Unzip the package contents into the work space and rename the adapter (XML) and Jython (.py)

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 21 of 503

files.

Adapter Development and Testing

The Adapter Development and Testing phase is a highly iterative process. As the adapter begins to
take shape, you begin testing against the final use cases, make changes, test again, and repeat this
process until the adapter complies with the requirements.

Startup and Preparation of Copy

l Modify XML parts of the adapter: Name (id) in line 1, Created CI Types, and Called Jython script
name.

l Get the copy running with identical results to the original adapter.

l Comment out most of the code, especially the critical result-producing code.

Development and Testing

l Use other sample code to develop changes

l Test adapter by running it

l Use a dedicated view to validate complex results, search to validate simple results

Adapter Packaging and Productization

TheAdapter Packaging and Productization phase accounts for the last phase of development. As a
best practice, a final pass should bemade to clean up debugging remnants, documents, and
comments, to look at security considerations, and so on, beforemoving on to packaging. You should
always have at least a readme document to explain the inner workings of the adapter. Someone
(maybe even you) may need to look at this adapter in the future and will be aided greatly by even the
most limited documentation.

Cleanup and Document

l Remove debugging

l Comment all functions and add some opening comments in themain section

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 22 of 503

l Create sample TQL and view for the user to test

Create Package

l Export adapters, TQL, and so on with the PackageManager. For details, see PackageManager in
theUniversal CMDB Administration Guide.

l Check any dependencies your package has on other packages, for example, if the CIs created by
those packages are input CIs to your adapter.

l Use PackageManager to create a package zip. For details, see PackageManager in theUniversal
CMDB Administration Guide.

l Test deployment by removing parts of the new content and redeploying, or deploying on another test
system.

Data Flow Management and Integration

DFM adapters are capable of integration with other products. Consider the following definitions:

l DFM collects specific content frommany targets.

l Integration collects multiple types of content from one system.

Note that these definitions do not distinguish between themethods of collection. Neither does DFM.
The process of developing a new adapter is the same process for developing new integration. You do
the same research, make the same choices for new vs. existing adapters, write the adapters the same
way, and so on. Only a few things change:

l The final adapter's scheduling. Integration adapters may runmore frequently than discovery, but it
depends on the use cases.

l Input CIs:

o Integration: non-CI trigger to run with no input: a file name or source is passed through the
adapter parameter.

o Discovery: uses regular, CMDB CIs for input.

For integration projects, you should almost always reuse an existing adapter. The direction of the
integration (from Universal CMDB to another product, or from another product to Universal CMDB)may
affect your approach to development. There are field packages available for you to copy for your own
uses, using proven techniques.

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 23 of 503

From Universal CMDB to another project:

l Create a TQL that produces the CIs and relations to be exported.

l Use a generic wrapper adapter to execute the TQL and write the results to an XML file for the
external product to read.

Note: For examples of field packages, contact Micro Focus Software Support.

To integrate another product to Universal CMDB, depending on how the other product exposes its data,
the integration adapter acts differently:

Integration Type Reference Example to Be Reused

Access the product's database directly Microsoft SCCM

Read in a csv or xml file produced by an export Troux

Access a product's API BMC Atrium/Remedy

Associating Business Value with Discovery Development

The use case for developing new discovery content should be driven by a business case and plan to
produce business value. That is, the goal of mapping system components to CIs and adding them to
the CMDB is to provide business value.

The content may not always be used for applicationmapping, although this is a common intermediate
step for many use cases. Regardless of the end use of the content, your plan should answer the
following questions:

l Who is the consumer? How should the consumer act on the information provided by the CIs (and
the relationships between them)?What is the business context in which the CIs and relationships
are to be viewed? Is the consumer of these CIs a person or a product or both?

l Once the perfect combination of CIs and relationships exists in the CMDB, how do I plan on using
them to produce business value?

l What should the perfect mapping look like?

o What term wouldmost meaningfully describe the relationships between each CI?

o What types of CIs would bemost important to include?

o What is the end usage and end user of themap?

l What would be the perfect report layout?

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 24 of 503

Once the business justification is established, the next step is to embody the business value in a
document. This means picturing the perfect map using a drawing tool and understanding the impact and
dependencies between CIs, reports, how changes are tracked, what change is important, monitoring,
compliance, and additional business value as required by the use cases.

This drawing (or model) is referred to as the blueprint.

For example, if it is critical for the application to know when a certain configuration file has changed, the
file should bemapped and linked to the appropriate CI (to which it relates) in the drawnmap.

Work with an SME (Subject Matter Expert) of the area, who is the end user of the developed content.
This expert should point out the critical entities (CIs with attributes and relationships) that must exist in
the CMDB to provide business value.

Onemethod could be to provide a questionnaire to the application owner (also the SME in this case).
The owner should be able to specify the above goals and blueprint. The ownermust at least provide a
current architecture of the application.

You shouldmap critical data only and no unnecessary data: you can always enhance the adapter later.
The goal should be to set up a limited discovery that works and provides value. Mapping large
quantities of data gives more impressivemaps but can be confusing and time consuming to develop.

Once themodel and business value is clear, continue to the next stage. This stage can be revisited as
more concrete information is provided from the next stages.

Researching Integration Requirements

The prerequisite of this stage is a blueprint of the CIs and relationships needed to be discovered by
DFM, which should include the attributes that are to be discovered. For details, see "Adapter
Development andWriting Overview" on page 19.

This section includes the following topics:

l "Modifying an Existing Adapter" on the next page

l "Writing a New Adapter" on the next page

l "Model Research" on the next page

l "Technology Research" on page 27

l "Guidelines for ChoosingWays to Access Data" on page 27

l "Summary" on page 28

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 25 of 503

Modifying an Existing Adapter

Youmodify an existing adapter when an out-of-the-box or field adapter exists, but:

l It does not discover specific attributes that are needed

l A specific type of target (OS) is not being discovered or is being incorrectly discovered

l A specific relationship is not being discovered or created

If an existing adapter does some, but not all, of the job, your first approach should be to evaluate the
existing adapters and verify if one of them almost does what is needed; if it does, you canmodify the
existing adapter.

You should also evaluate if an existing field adapter is available. Field adapters are discovery adapters
that are available but are not out-of-the-box. Contact Micro Focus Software Support to receive the
current list of field adapters.

Writing a New Adapter

A new adapter needs to be developed:

l When it is faster to write an adapter than to insert the informationmanually into the CMDB
(generally, from about 50 to 100 CIs and relationships) or it is not a one-time effort.

l When the need justifies the effort.

l If out-of-the-box or field adapters are not available.

l If the results can be reused.

l When the target environment or its data is available (you cannot discover what you cannot see).

Model Research

l Browse the UCMDB class model (CI TypeManager) andmatch the entities and relations from your
blueprint to existing CITs. It is highly recommended to adhere to the current model to avoid
possible complications during version upgrade. If you need to extend themodel, you should create
new CITs since an upgrademay overwrite out-of-the-box CITs.

l If some entities, relations, or attributes are lacking from the current model, you should create them.
It is preferable to create a package with these CITs (which will also later hold all the discovery,
views, and other artifacts relating to this package) since you need to be able to deploy these CITs

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 26 of 503

on each installation of Universal CMDB.

Technology Research

Once you have verified that the CMDB holds the relevant CIs, the next stage is to decide how to
retrieve this data from the relevant systems.

Retrieving data usually involves using a protocol to access amanagement part of the application,
actual data of the application, or configuration files or databases that are related to the application. Any
data source that can provide information on a system is valuable. Technology research requires both
extensive knowledge of the system in question and sometimes creativity.

For home-grown applications, it may be helpful to provide a questionnaire form to the application owner.
In this form the owner should list all the areas in the application that can provide information needed for
the blueprint and business values. This information should include (but does not have to be limited to)
management databases, configuration files, log files, management interfaces, administration
programs, Web services, messages or events sent, and so on.

For off-the-shelf products, you should focus on documentation, forums, or support of the product. Look
for administration guides, plug-ins and integrations guides, management guides, and so on. If data is
still missing from themanagement interfaces, read about the configuration files of the application,
registry entries, log files, NT event logs, and any artifacts of the application that control its correct
operation.

Guidelines for Choosing Ways to Access Data

Relevance:Select sources or a combination of sources that provide themost data. If a single source
supplies most information whereas the rest of the information is scattered or hard to access, try to
assess the value of the remaining information by comparison with the effort or risk of getting it.
Sometimes youmay decide to reduce the blueprint if the value or cost does not warrant the invested
effort.

Reuse: If Universal CMDB already includes a specific connection protocol support it is a good reason
to use it. It means the DFM Framework is able to supply a ready made client and configuration for the
connection. Otherwise, youmay need to invest in infrastructure development. You can view the
currently supported Universal CMDB connection protocols in theData Flow Management > Data
Flow Probe Setup > Domains and Probes pane. For details about each protocol, see the section
describing the supported protocols in theUniversal CMDB Discovery and Integrations Content Guide.

You can add new protocols by adding new CIs to themodel. For details, contact Micro Focus Software
Support.

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 27 of 503

Note: To access Windows Registry data, you can use eitherWMI or NTCMD.

Security:Access to information usually requires credentials (user name, password), which are entered
in the CMDB and are kept secure throughout the product. If possible, and if adding security does not
conflict with other principles you have set, choose the least sensitive credential or protocol that still
answers access needs. For example, if information is available both through JMX (standard
administration interface, limited) and Telnet, it is preferable to use JMX since it inherently provides
limited access and (usually) no access to the underlying platform.

Comfort: Somemanagement interfaces may includemore advanced features. For example, it might
be easier to issue queries (SQL, WMI) than to navigate information trees or build regular expressions
for parsing.

Developer Audience: The people who will eventually develop adapters may have an inclination
towards a certain technology. This can also be considered if two technologies provide almost the same
information at an equal cost in other factors.

Summary

The outcome of this stage is a document describing the access methods and the relevant information
that can be extracted from eachmethod. The document should also contain amapping from each
source to each relevant blueprint data.

Each access method should bemarked according to the above instructions. Finally you should now
have a plan of which sources to discover and what information to extract from each source into the
blueprint model (which should by now have beenmapped to the corresponding UCMDB model).

Developing Integration Content
Before creating a new integration, youmust understand what the integration's requirements are:

l Should the integration copy data into the CMDB? Should the data be tracked by history? Is the
source unreliable?

If you answer yes to these questions, thenPopulation is needed.

l Should the integration federate data on the fly for views and TQL queries? Is the accuracy of
changes to data critical? Is the amount of data too large to copy to the CMDB, but the requested
amount of data is usually small?

If you answer yes to these questions, then Federation is needed.

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 28 of 503

l Should the integration push data to remote data sources?

If you answer yes to these questions, thenData Push is needed.

l Is the length of any CI's ID greater than 60 characters?

If you answer yes to this question, then decrease the ID length for all concerning CIs, so that their
IDs do not exceed themaximum length of 60 characters.

Note: Federation and Population flows may be configured for the same integration, for maximum
flexibility.

For details about the different types of integrations, see Integration Studio in theUniversal CMDB Data
Flow Management Guide.

Five different options are available for creating integration adapters:

1. Jython Adapter:

o The classic discovery pattern

o Written in Jython

o Used for population

For details, see "Developing Jython Adapters" on page 46.

2. Java Adapter:

o An adapter that implements one of the adapter interfaces in the Federation SDK Framework.

o May be used for one or more of Federation, Population, or Data Push (depending on the
required implementation).

o Written from scratch in Java, which allows writing code that will connect to any possible
source or target.

o Suitable for jobs that connect to a single data source or target.

For details, see "Developing Java Adapters" on page 178.

3. Generic DB Adapter:

o An abstract adapter based on the Java Adapter that uses the Federation SDK Framework.

o Allows creation of adapters that connect to external data repositories.

o Supports both Federation and Population (with a Java plug-in implemented for changes
support).

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 29 of 503

o Relatively easy to define, as it is basedmainly on XML and property configuration files.

o Main configuration is based on an orm.xml file that maps between UCMDB classes and
database columns.

o Suitable for jobs that connect to a single data source.

For details, see "Developing Generic Database Adapters" on page 98.

4. Generic Push Adapter:

o An abstract adapter based on the Java Adapter (the Federation SDK Framework) and the
Jython Adapter.

o Allows creation of adapters that push data to remote targets.

o Relatively easy to define, as you need only to define themapping between UCMDB classes
and XML, and a Jython script that pushes the data to the target.

o Suitable for jobs that connect to a single data target.

o Used for Data Push.

For details, see "Developing Push Adapters" on page 218.

5. EnhancedGeneric Push Adapter:

o All the above features of the Generic Push Adapter

o A root-element-based adapter

o Maps a UCMDB tree data structure to a target tree data structure

For details, see "Achieving Data Push using the Generic Adapter" on page 269.

The following table displays the capabilities of each adapter:

Flow/Adapter Jython
Adapter

Java
Adapter

Generic DB
Adapter

Generic
Push
Adapter

Enhanced
Generic
Push
Adapter

Population Yes Yes Yes No No

Federation No Yes Yes No No

Data Push No Yes No Yes Yes

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 30 of 503

Developing Discovery Content
This section includes:

l "Discovery Adapters and Related Components " below

l "Separating Adapters" on the next page

Discovery Adapters and Related Components

The following diagram shows an adapter's components and the components they interact with to
execute discovery. The components in green are the actual adapters, and the components in blue are
components that interact with adapters.

Note that theminimum notion of an adapter is two files: an XML document and a Jython script. The
Discovery Framework, including input CIs, credentials, and user-supplied libraries, is exposed to the
adapter at run time. Both discovery adapter components are administered through Data Flow
Management. They are stored operationally in the CMDB itself; although the external package remains,
it is not referred to for operation. The PackageManager enables preservation of the new discovery and
integration content capability.

Input CIs to the adapter are provided by a TQL, and are exposed to the adapter script in system-
supplied variables. Adapter parameters are also supplied as destination data, so you can configure the
adapter's operation according to an adapter's specific function.

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 31 of 503

The DFM application is used to create and test new adapters. You use the Universal Discovery,
Adapter Management, and Data Flow Probe Setup pages during adapter writing.

Adapters are stored and transported as packages. The PackageManager application and the JMX
console are used to create packages from newly created adapters, and to deploy adapters on new
systems.

Separating Adapters

An entire discovery could be defined in a single adapter. But good design demands that a complex
system be separated into simpler, moremanageable components.

The following are guidelines and best practices for dividing the adapter process:

l Discovery should be done in stages. Each stage should be represented by an adapter that should
map an area or tier of the system. Adapters should rely on the previous stage or tier to be
discovered, to continue discovery of the system. For example, Adapter A is triggered by an
application server TQL result andmaps the application server tier. As part of this mapping, a JDBC
connection component is mapped. Adapter B registers a JDBC connection component as a trigger
TQL and uses the results of adapter A to access the database tier (for example, through the JDBC
URL attribute) andmaps the database tier.

l The two-phase connect paradigm: Most systems require credentials to access their data. This
means that a user/password combination needs to be tried against these systems. The DFM
administrator supplies credentials information in a secure way to the system and can give several,
prioritized login credentials. This is referred to as theProtocol Dictionary. If the system is not
accessible (for whatever reason) there is no point in performing further discovery. If the connection
is successful, there needs to be a way to indicate which credential set was successfully used, for
future discovery access.

These two phases lead to a separation of the two adapters in the following cases:

o Connection Adapter: This is an adapter that accepts an initial trigger and looks for the
existence of a remote agent on that trigger. It does so by trying all entries in the Protocol
Dictionary whichmatch this agent's type. If successful, this adapter provides as its result a
remote agent CI (SNMP, WMI, and so on), which also points to the correct entry in the Protocol
Dictionary for future connections. This agent CI is then part of a trigger for the content adapter.

o Content Adapter: This adapter's precondition is the successful connection of the previous
adapter (preconditions specified by the TQLs). These types of adapters no longer need to look
through all of the Protocol Dictionary since they have a way to obtain the correct credentials from
the remote agent CI and use them to log in to the discovered system.

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 32 of 503

l Different scheduling considerations can also influence discovery division. For example, a system
may only be queried during off hours, so even though it wouldmake sense to join the adapter to the
same adapter discovering another system, the different schedules mean that you need to create
two adapters.

l Discovery of different management interfaces or technologies to discover the same system should
be placed in separate adapters. This is so that you can activate the access method appropriate for
each system or organization. For example, some organizations haveWMI access tomachines but
do not have SNMP agents installed on them.

Implement a Discovery Adapter
A DFM task has the aim of accessing remote (or local) systems, modeling extracted data as CIs, and
saving the CIs to the CMDB. The task consists of the following steps:

1. Create an adapter.

You configure an adapter file that holds the context, parameters, and result types by selecting the
scripts that are to be part of the adapter. For details, see "Step 1: Create an Adapter" on page 35.

2. Create a Discovery job.

You configure a job with scheduling information and a trigger query. For details, see "Step 2:
Assign a Job to the Adapter" on page 42.

3. Edit Discovery code.

You can edit the Jython or Java code that is contained in the adapter files and that refers to the
DFM Framework. For details, see "Step 3: Create Jython Code" on page 43.

To write new adapters, you create each of the above components, each one of which is automatically
bound to the component in the previous step. For example, once you create a job and select the
relevant adapter, the adapter file binds to the job.

Adapter Code

The actual implementation of connecting to the remote system, querying its data, andmapping it as
CMDB data is performed by the Jython code. For example, the code contains the logic for connecting
to a database and extracting data from it. In this case, the code expects to receive a JDBC URL, a user
name, a password, a port, and so on. These parameters are specific for each instance of the database
that answers the TQL query. You define these variables in the adapter (in the Trigger CI data) and when

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 33 of 503

the job runs, these specific details are passed to the code for execution.

The adapter can refer to this code by a Java class name or a Jython script name. In this section we
discuss writing DFM code as Jython scripts.

An adapter can contain a list of scripts to be used when running discovery. When creating a new
adapter, you usually create a new script and assign it to the adapter. A new script includes basic
templates, but you can use one of the other scripts as a template by right-clicking it and selectingSave
as:

For details on writing new Jython scripts, see "Step 3: Create Jython Code" on page 43. You add
scripts through the Resources pane:

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 34 of 503

The list of scripts are run one after the other, in the order in which they are defined in the adapter:

Note: A script must be specified even though it is being used solely as a library by another script.
In this case, the library script must be defined before the script using it. In this example, the
processdbutils.py script is a library used by the last host_processes.py script. Libraries are
distinguished from regular runnable scripts by the lack of the DiscoveryMain() function.

Step 1: Create an Adapter
An adapter can be considered as the definition of a function. This function defines an input definition,
runs logic on the input, defines the output, and provides a result.

Each adapter specifies input and output: Both input and output are Trigger CIs that are specifically
defined in the adapter. The adapter extracts data from the input Trigger CI and passes this data as
parameters to the code. Data from related CIs is sometimes passed to the code too. For details, see
"Related CIs Window" in theUniversal CMDB Data Flow Management Guide. An adapter's code is
generic, apart from these specific input Trigger CI parameters that are passed to the code.

For details on input components, see "Data Flow Management Concepts" in theUniversal CMDB Data
Flow Management Guide.

This section includes the following topics:

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 35 of 503

l "Define Adapter Input (Trigger CIT and Input Query)" below

l "Define Adapter Output" on page 38

l "Override Adapter Parameters" on page 39

l "Override Probe Selection - Optional" on page 40

l "Configure a classpath for a remote process - Optional" on page 42

1. Define Adapter Input (Trigger CIT and Input Query)

You use the Trigger CIT and Input Query components to define specific CIs as adapter input:

o The Trigger CIT defines which CIT is used as the input for the adapter. For example, for an
adapter that is going to discover IPs, the input CIT is Network.

o The Input query is a regular, editable query that defines the query against the CMDB. The Input
Query defines additional constraints on the CIT (for example, if the task requires a hostID or
application_ip attribute), and can definemore CI data, if needed by the adapter.

If the adapter requires additional information from the CIs that are related to the Trigger CI, you
can add additional nodes to the input TQL. For details, see "How to AddQuery Nodes and
Relationships to a TQLQuery" in theUniversal CMDB Modeling Guide.

o The Trigger CI data contains all the required information on the Trigger CI as well as information
from the other nodes in the Input TQL, if they are defined. DFM uses variables to retrieve data
from the CIs. When the task is downloaded to the Probe, the Trigger CI data variables are
replaced with actual values that exist on the attributes for real CI instances.

o If the value of the destination data is a list, you can define the number of items from the list to
be sent to the probe. To define it, add a colon after the default value followed by the number of
items. If there is no default value for the destination data, enter two colons.

For example, if the following destination data is entered: name=portId, value=
${PHYSICALPORT.root_id:NA:1} or name=portId, value= ${PHYSICALPORT.root_
id::1}, only the first port from the port list is sent to the probe.

Example of Replacing Variables with Actual Data:

In this example, variables replace the IpAddressCI data with actual values that exist on real
IpAddressCI instances in your system.

The Triggered CI data for the IpAddressCI includes a fileName variable. This variable
enables the replacement of theCONFIGURATION_DOCUMENT node in the Input TQLwith
the actual values of the configuration file located on a host:

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 36 of 503

The Trigger CI data is uploaded to the Probe with all variables replaced by actual values. The
adapter script includes a command to use the DFM Framework to retrieve the actual values of
the defined variables:

Framework.getTriggerCIData ('ip_address')

The fileName and path variables use the data_name and document_path attributes from the
CONFIGURATION_DOCUMENT node (defined in the Input Query Editor – see previous
example).

Click

thumbnail to view full size image.

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 37 of 503

The Protocol, credentialsId, and ip_address variables use the root_class,
credentials_id, and application_ip attributes:

2. Define Adapter Output

The output of the adapter is a list of discovered CIs (Data Flow Management > Adapter
Management > Adapter Definition tab > Discovered CITs) and the links between them:

You can also view the CITs as a topology map, that is, the components and the way in which they
are linked together (click theView Discovered CITs as Map button):

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 38 of 503

The discovered CIs are returned by the DFM code (that is, the Jython script) in the format of
UCMDB's ObjectStateHolderVector. For details, see "Results Generation by the Jython
Script" on page 51.

Example of Adapter Output:

In this example, you define which CITs are to be part of the IP CI output.

a. Access Data Flow Management > Adapter Management.

b. In the Resources pane, select Network > Adapters > NSLOOKUP_on_Probe.

c. In the Adapter Definition tab, locate the Discovered CITs pane.

d. The CITs that are to be part of the adapter output are listed. Add CITs to, or remove from,
the list. For details, see "Adapter Definition Tab" in theUniversal CMDB Data Flow
Management Guide.

3. Override Adapter Parameters

To configure an adapter for more than one job, you can override adapter parameters. For example,
the adapter SQL_NET_Dis_Connection is used by both the MSSQL Connection by SQL and the
Oracle Connection by SQL jobs.

Example of Overriding an Adapter Parameter:

This example illustrates overriding an adapter parameter so that one adapter can be used to
discover bothMicrosoft SQL Server andOracle databases.

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 39 of 503

a. Access Data Flow Management > Adapter Management.

b. In the Resources pane, select Database_Basic > Adapters > SQL_NET_Dis_
Connection.

c. In the Adapter Definition tab, locate theAdapter Parameters pane. The protocolType
parameter has a value of all:

d. Right-click theSQL_NET_Dis_Connection_MsSql adapter and chooseGo to
Discovery Job > MSSQL Connection by SQL.

e. Display theProperties tab. Locate the Parameters pane:

The all value is overwritten with the MicrosoftSQLServer value.

Note: TheOracle Connection by SQL job includes the same parameter but the value is
overwritten with anOracle value.

For details on adding, deleting, or editing parameters in the Adapter Parameters pane, see
"Adapter Definition Tab" in theUniversal CMDB Data Flow Management Guide.

DFM begins looking for Microsoft SQL Server instances according to this parameter.

4. Override Probe Selection - Optional

On the UCMDB server there is a dispatchingmechanism that takes the trigger CIs received by the
UCMDB and automatically chooses which probe should run the job for each trigger CI according
to one of the following options:

o For the IP address CI type: Take the probe that is defined for this IP.

o For the running software CI type:Use the attributes application_ip and application_ip_

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 40 of 503

domain and choose the probe that is defined for the IP in the relevant domain.

o For other CI types: Take the node’s IP according to the CI’s related node (if it exists).

The automatic probe selection is done according to the CI’s related node. After obtaining the CI’s
related node, the dispatchingmechanism chooses one of the node’s IPs and chooses the probe
according to the probe’s network scope definitions.

In the following cases, you need to specify the probemanually and not use the automatic
dispatchingmechanism:

o You already know which probe should be run for the adapter and you do not need the automatic
dispatchingmechanism to select the probe (for example if the trigger CI is the probe gateway).

o The automatic probe selectionmight fail. This can happen in the following situations:

l A trigger CI does not have a related node (such as the network CIT)

l A trigger CI’s node has multiple IPs, each belonging to a different probe.

To manually specify which probe to use with the adapter:

o Select the adapter and click theAdapter Configuration tab.

o Under Trigger Dispatch Options, select Override default probe selection.

o In the box, enter the Probe in one of the following formats:

Probe name The name of the Probe

IP address The Probe's IP address—can be defined in either IPv4 or IPv6 format

IP,Domain IPv4 format: 16.59.63.86,DefaultDomain

IPv6 format: 2001:0:9d46:953c:34a9:1e6b:f2ff:fffe,CustomDomain

Domain name The domain from which the Probe should be selected.

For example:

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 41 of 503

5. Configure a classpath for a remote process - Optional

For details, see "Configure Remote Process Execution" on page 44.

Step 2: Assign a Job to the Adapter
Each adapter has one or more associated jobs that define the execution policy. Jobs enable scheduling
the same adapter differently over different sets of Triggered CIs and also enable supplying different
parameters for each set.

The jobs appear in the Discovery Modules tree, and this is the entity that the user activates, as shown
in the picture below.

Choose a Trigger TQL

Each job is associated with Trigger TQLs. These Trigger TQLs publish results that are used as Input
Trigger CIs for the adapter of this job.

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 42 of 503

A Trigger TQL can add constraints to an Input TQL. For example, if an input TQL's results are IPs
connected to SNMP, a trigger TQL's results can be IPs connected to SNMP within the range 195.0.0.0-
195.0.0.10.

Note: A trigger TQLmust refer to the same objects that the input TQL refers to. For example, if an
input TQL queries for IPs running SNMP, you cannot define a trigger TQL (for the same job) to
query for IPs connected to a host, because some of the IPs may not be connected to an SNMP
object, as required by the input TQL.

Set Scheduling Information

The scheduling information for the Probe specifies when to run the code on Trigger CIs. If the Invoke
on new triggered CIs Immediately check box is selected, the code also runs once on each Trigger
CI when it reaches the Probe, regardless of future schedule settings.

For each scheduled occurrence for each job, the Probe runs the code against all Trigger CIs
accumulated for that job. For details, see Discovery Scheduler Dialog Box in theUniversal CMDB
Data Flow Management Guide.

Override Adapter Parameters

When configuring a job you can override the adapter parameters. For details, see "Override Adapter
Parameters" on page 39.

Step 3: Create Jython Code
Universal CMDB uses Jython scripts for adapter-writing. For example, the SNMP_Connection.py script
is used by the SNMP_NET_Dis_Connection adapter to try and connect to machines using SNMP.
Jython is a language based on Python and powered by Java.

For details on how to work in Jython, you can refer to these websites:

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 43 of 503

l http://www.jython.org

l http://www.python.org

For details, see "Create Jython Code" on page 46.

Configure Remote Process Execution
You can run discovery for a discovery job in a process separate from the Data Flow Probe's process.

For example, you can run the job in a separate remote process if the job uses .jar libraries that are a
different version than the Probe's libraries or that are incompatible with the Probe's libraries.

You can also run the job in a separate remote process if the job potentially consumes a lot of memory
(brings a lot of data) and you want to isolate the Probe from potentialOutOMemory problems.

To configure a job to run as a remote process, define the following parameters in its adapter's
configuration file:

Parameter Description

remoteJVMArgs JVM parameters for the remote Java process.

runInSeparateProcess When set to true, the discovery job runs in a separate process.

remoteJVMClasspath (Optional) Enables customization of the classpath of the remote process,
overriding the default Probe classpath. This is useful if theremight be
version incompatibility between the Probe's jars and custom jars required
for the customer-defined discovery.

If the remoteJVMClasspath parameter is not defined, or is left empty, the
default Probe classpath is used.

If you develop a new discovery job and you want to ensure that the Probe
jar library version does not collide with the job's jar libraries, youmust use
at least theminimal classpath required to execute basic discovery. The
minimal classpath is defined in theDataFlowProbe.properties file in the
basic_discovery_minimal_classpath parameter.

Examples of remoteJVMClasspath customization:

l To prepend or append custom jars to the default Probe classpath.
customize the remoteJVMClasspath parameter as follows:

custom1.jar;%classpath%;custom2.jar -

In this case, custom1.jar is placed before default Probe classpath,
and custom2.jar is appended to the Probe classpath.

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 44 of 503

Parameter Description

l To use theminimal classpath, customize the remoteJVMClasspath
parameter as follows:

custom1.jar;%minimal_classpath%;custom2.jar

Developer ReferenceGuide
Chapter 1: Adapter Development andWriting

Micro Focus Universal CMDB (10.33) Page 45 of 503

Chapter 2: Developing Jython Adapters
This chapter includes:

HPE Data Flow Management API Reference 46

Create Jython Code 46

Support Localization in Jython Adapters 62

Record DFM Code 71

Jython Libraries and Utilities 72

HPE Data Flow Management API Reference
For full documentation on the available APIs, seeHPE Universal CMDB Data Flow Management API
Reference. These files are located in the following folder:

<UCMDB install directory>\UCMDBServer\deploy\ucmdb-docs\docs\eng\APIs\DDM_
JavaDoc\index.html

Create Jython Code
Universal CMDB uses Jython scripts for adapter-writing. For example, theSNMP_Connection.py
script is used by theSNMP_NET_Dis_Connection adapter to try to connect to machines using
SNMP. Jython is a language based on Python and powered by Java.

For details on how to work in Jython, you can refer to these websites:

l http://www.jython.org

l http://www.python.org

The following section describes the actual writing of Jython code inside the DFM Framework. This
section specifically addresses those contact points between the Jython script and the Framework that
it calls, and also describes the Jython libraries and utilities that should be used whenever possible.

Note:

Micro Focus Universal CMDB (10.33) Page 46 of 503

l Scripts written for Universal Discovery should be compatible with Jython version 2.5.3.

l For full documentation on the available APIs, see the Universal Discovery API
ReferenceHPE Universal CMDB Data Flow Management API Reference.

This section includes the following topics:

l "Use External Java JAR Files within Jython" below

l "Execution of the Code" below

l "Modifying Out-of-the-Box Scripts" on the next page

l "Structure of the Jython File" on the next page

l "Results Generation by the Jython Script" on page 51

l "The Framework Instance" on page 54

l "Finding the Correct Credentials (for Connection Adapters)" on page 57

l "Handling Exceptions from Java" on page 60

Use External Java JAR Files within Jython

When developing new Jython scripts, external Java Libraries (JAR files) or third-party executable files
are sometimes needed as Java utility archives, connection archives such as JDBC Driver JAR files, or
executable files (for example, nmap.exe is used for credential-less discovery).

These resources should be bundled in the package under theExternal Resources folder. Any resource
put in this folder is automatically sent to any Probe that connects to your Universal CMDB server.

In addition, when discovery is launched, any JAR file resource is loaded into the Jython's classpath,
making all the classes within it available for import and use.

Execution of the Code

After a job is activated, a task with all the required information is downloaded to the Probe.

The Probe starts running the DFM code using the information specified in the task.

The Jython code flow starts running from amain entry in the script, executes code to discover CIs, and
provides results of a vector of discovered CIs.

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 47 of 503

Modifying Out-of-the-Box Scripts

Whenmaking out-of-the-box script modifications, make only minimal changes to the script and place
any necessary methods in an external script. You can track changes more efficiently and, when
moving to a newer Universal CMDB version, your code is not overwritten.

For example, the following single line of code in an out-of-the-box script calls amethod that calculates a
Web server name in an application-specific way:

serverName = iplanet_cspecific.PlugInProcessing(serverName, transportHN, mam_utils)

Themore complex logic that decides how to calculate this name is contained in an external script:

implement customer specific processing for 'servername' attribute of httpplugin
#
def PlugInProcessing(servername, transportHN, mam_utils_handle):
 # support application-specific HTTP plug-in naming
 if servername == "appsrv_instance":
 # servername is supposed to match up with the j2ee server name,
however some groups do strange things with their
 # iPlanet plug-in files. this is the best work-around we could
find. this join can't be done with IP address:port
 # because multiple apps on a web server share the same IP:port for
multiple websphere applications
 logger.debug('httpcontext_webapplicationserver attribute has been
changed from [' + servername + '] to [' + transportHN[:5] + '] to facilitate
websphere enrichment')
 servername = transportHN[:5]
 return servername

Save the external script in the External Resources folder. For details, see Resources Pane in the
Universal CMDB Data Flow Management Guide. If you add this script to a package, you can use this
script for other jobs, too. For details on working with PackageManager, see PackageManager in the
Universal CMDB Administration Guide.

During upgrade, the change youmake to the single line of code is overwritten by the new version of the
out-of-the-box script, so you will need to replace the line. However, the external script is not
overwritten.

Structure of the Jython File

The Jython file is composed of three parts in a specific order:

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 48 of 503

1. Imports

2. Main Function - DiscoveryMain

3. Functions definitions (optional)

The following is an example of a Jython script:

imports section
from appilog.common.system.types import ObjectStateHolder
from appilog.common.system.types.vectors import ObjectStateHolderVector
Function definition
def foo:
 # do something
Main Function
def DiscoveryMain(Framework):
 OSHVResult = ObjectStateHolderVector()
 ## Write implementation to return new result CIs here...
 return OSHVResult

Imports

Jython classes are spread across hierarchical namespaces. In version 7.0 or later, unlike in previous
versions, there are no implicit imports, and so every class you usemust be imported explicitly. (This
change was made for performance reasons and to enable an easier understanding of the Jython script
by not hiding necessary details.)

l To import a Jython script:

import logger

l To import a Java class:

from appilog.collectors.clients import ClientsConsts

Main Function – DiscoveryMain

Each Jython runnable script file contains amain function: DiscoveryMain.

The DiscoveryMain function is themain entry into the script; it is the first function that runs. Themain
functionmay call other functions that are defined in the scripts:

def DiscoveryMain(Framework):

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 49 of 503

The Framework argument must be specified in themain function definition. This argument is used by
themain function to retrieve information that is required to run the scripts (such as information on the
Trigger CI and parameters) and can also be used to report on errors that occur during the script run.

You can create a Jython script without any mainmethod. Such scripts are used as library scripts that
are called from other scripts.

Functions Definition

Each script can contain additional functions that are called from themain code. Each such function can
call another function, which either exists in the current script or in another script (use the import
statement). Note that to use another script, youmust add it to the Scripts section of the package:

Example of a Function Calling Another Function:

In the following example, themain code calls the doQueryOSUsers(..)method which calls an
internal method doOSUserOSH(..):

def doOSUserOSH(name):
 sw_obj = ObjectStateHolder('winosuser')

 sw_obj.setAttribute('data_name', name)
 # return the object
 return sw_obj
def doQueryOSUsers(client, OSHVResult):
 _hostObj = modeling.createHostOSH(client.getIpAddress())
 data_name_mib = '1.3.6.1.4.1.77.1.2.25.1.1,1.3.6.1.4.1.77.1.2.25.1.2,string'
 resultSet = client.executeQuery(data_name_mib)
 while resultSet.next():
 UserName = resultSet.getString(2)
 ########## send object ##############

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 50 of 503

 OSUserOSH = doOSUserOSH(UserName)
 OSUserOSH.setContainer(_hostObj)
 OSHVResult.add(OSUserOSH)
def DiscoveryMain(Framework):
 OSHVResult = ObjectStateHolderVector()
 try:
 client = Framework.createClient(Framework.getTriggerCIData
(BaseClient.CREDENTIALS_ID))
 except:
 Framework.reportError('Connection failed')
 else:
 doQueryOSUsers(client, OSHVResult)
 client.close()
 return OSHVResult

If this script is a global library that is relevant to many adapters, you can add it to the list of scripts in the
jythonGlobalLibs.xml configuration file, instead of adding it to each adapter (Adapter Management
> Resources Pane > AutoDiscoveryContent > Configuration Files).

Results Generation by the Jython Script

Each Jython script runs on a specific Trigger CI, and ends with results that are returned by the return
value of the DiscoveryMain function.

The script result is actually a group of CIs and links that are to be inserted or updated in the CMDB. The
script returns this group of CIs and links in the format of ObjectStateHolderVector.

The ObjectStateHolder class is a way to represent an object or link defined in the CMDB. The
ObjectStateHolder object contains the CIT name and a list of attributes and their values. The
ObjectStateHolderVector is a vector of ObjectStateHolder instances.

The ObjectStateHolder Syntax

This section explains how to build the DFM results into a UCMDB model.

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 51 of 503

Example of Setting Attributes on the CIs:

TheObjectStateHolder class describes the DFM result graph. Each CI and link (relationship) is
placed inside an instance of the ObjectStateHolder class as in the following Jython code
sample:
siebel application server 1 appServerOSH = ObjectStateHolder('siebelappserver') 2
appServerOSH.setStringAttribute('data_name', sblsvrName) 3 appServerOSH.setStringAttribute
('application_ip', ip) 4 appServerOSH.setContainer(appServerHostOSH)

l Line 1 creates a CI of type siebelappserver.

l Line 2 creates an attribute called data_namewith a value of sblsvrNamewhich is a Jython
variable set with the value discovered for the server name.

l Line 3 sets a non-key attribute that is updated in the CMDB.

l Line 4 is the building of containment (the result is a graph). It specifies that this application
server is contained inside a host (another ObjectStateHolder class in the scope).

Note: Each CI being reported by the Jython script must include values for all the key attributes of
the CI's CI Type.

Example of Relationships (Links):

The following link example explains how the graph is represented:
1 linkOSH = ObjectStateHolder('route') 2 linkOSH.setAttribute('link_end1', gatewayOSH) 3
linkOSH.setAttribute('link_end2', appServerOSH)

l Line 1 creates the link (that is also of the ObjectStateHolder class. The only difference is that
route is a link CI Type).

l Lines 2 and 3 specify the nodes at the end of each link. This is done using the end1 and end2
attributes of the link whichmust be specified (because they are theminimal key attributes of
each link). The attribute values are ObjectStateHolder instances. For details on End 1 and
End 2, see Link in theUniversal CMDB Data Flow Management Guide.

Caution: A link is directional. You should verify that End 1 and End 2 nodes correspond to valid
CITs at each end. If the nodes are not valid, the result object fails validation and is not reported
correctly. For details, see CI Type Relationships in theUniversal CMDB Modeling Guide.

Example of Vector (Gathering CIs):

After creating objects with attributes, and links with objects at their ends, youmust now group
them together. You do this by adding them to an ObjectStateHolderVector instance, as follows:

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 52 of 503

oshvMyResult = ObjectStateHolderVector()
oshvMyResult.add(appServerOSH)
oshvMyResult.add(linkOSH)

For details on reporting this composite result to the Framework so that it can be sent to the CMDB
server, see the sendObjects method.

Once the result graph is assembled in an ObjectStateHolderVector instance, it must be returned
to the DFM Framework to be inserted into the CMDB. This is done by returning the
ObjectStateHolderVector instance as the result of the DiscoveryMain() function.

Note: For details on creatingOSH for commonCITs, see "modeling.py" on page 74.

Sending Large Amounts of Data

Sending large amounts of data (usually more than 20 KB) is difficult to process in UCMDB. Data of this
size should be split into smaller chunks before sending to UCMDB. In order for all the chunks to be
correctly inserted to UCMDB, each chunk needs to contain required identification information for the
CIs in the chunk. This is a common scenario when developing Jython integrations. The sendObjects
method is used to send the results in chunks. If the Jython script sends a large number of results (the
default value is 20,000, but this value can be configured in the DataFlowProbe.properties File using the
appilog.agent.local.maxTaskResultSize key) it should chunk the results according to their topology.
This chunking should be performed taking into account identification rules so that the results are
entered correctly in UCMDB. If the Jython script does not chunk the results, the probe attempts to
chunk them; however, this can lead to poor performance for a large result set.

Note: Chunking should be used for Jython integration adapters and not for regular discovery jobs.
This is because discovery jobs usually discover information regarding a specific trigger and do not
send large amounts of information. With Jython integrations, large amounts of data are discovered
on the single trigger of the integration.

It is also possible to use chunking for a small number of results. In such a case, there is a relationship
between CIs in different chunks and the developer of the Jython script has two options:

l Send the entire CI and all of its identification information again in every chunk that contains a link to
it.

l Use the UCMDB ID of the CI. To do this, the Jython script has to wait for each chunk to be
processed in the UCMDB server in order to get the UCMDB IDs. To enable this mode (called
synchronous result sending), add the SendJythonResultsSynchronously tag to the adapter. This
tag ensures that when you finish sending the chunk, the UCMDB IDs of the CIs in the chunk have

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 53 of 503

already been received by the probe. The adapter developer can use the UCMDB IDs for generating
the next chunk. To use the UCMDB IDs, use the framework API getIdMapping.

Example of Using getIdMapping

In the first chunk you send nodes. In the second chunk you send processes. The root container of
the process is a node. Instead of sending the entire objectStateHolder of the node in the process
root_container attribute, you can get the UCMDB ID of the node using the getIdMapping API and
use only the node ID in the process root_container attribute tomake the chunk smaller.

The Framework Instance

The Framework instance is the only argument that is supplied in themain function in the Jython script.
This is an interface that can be used to retrieve information required to run the script (for example,
information on trigger CIs and adapter parameters), and is also used to report on errors that occur during
the script run. For details, see "HPE Data Flow Management API Reference" on page 46.

The correct usage of Framework instance is to pass it as argument to eachmethod that uses it.

Example:

def DiscoveryMain(Framework):
OSHVResult = helperMethod (Framework)

 return OSHVResult
def helperMethod (Framework):

probe_name = Framework.getDestinationAttribute('probe_name')
...
return result

This section describes themost important Framework usages:

l "Framework.getTriggerCIData(String attributeName)" on the next page

l "Framework.createClient(credentialsId, props)" on the next page

l "Framework.getParameter (String parameterName)" on page 56

l "Framework.reportError(Stringmessage) and Framework.reportWarning(Stringmessage)" on
page 57

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 54 of 503

Framework.getTriggerCIData(String attributeName)

This API provides the intermediate step between the Trigger CI data defined in the adapter and the
script.

Example of Retrieving Credential Information:

You request the following Trigger CI data information:

To retrieve the credential information from the task, use this API:

credId = Framework.getTriggerCIData('credentialsId')

Framework.createClient(credentialsId, props)

Youmake a connection to a remotemachine by creating a client object and executing commands on
that client. To create a client, retrieve the ClientFactory class. The getClientFactory() method
receives the type of the requested client protocol. The protocol constants are defined in the
ClientsConsts class. For details on credentials and supported protocols, see theUniversal CMDB
Discovery and Integrations Content Guide.

Example of Creating a Client Instance for the Credentials ID:

To create a Client instance for the credentials ID:

properties = Properties()
codePage = Framework.getCodePage()
properties.put(BaseAgent.ENCODING, codePage)
client = Framework.createClient(credentailsID ,properties)

You can now use the Client instance to connect to the relevant machine or application.

Example of Creating a WMI Client and Running a WMI Query:

To create aWMI client and run aWMI query using the client:

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 55 of 503

wmiClient = Framework.createClient(credential)
resultSet = wmiClient. executeQuery("SELECT TotalPhysicalMemory

FROM Win32_
LogicalMemoryConfiguration")

Note: Tomake the createClient() API work, add the following parameter to the Trigger CI data
parameters: credentialsId = ${SOURCE.credentials_id} in the Triggered CI Data pane. Or you
canmanually add the credentials ID when calling the function:
wmiClient = clientFactory().createClient(credentials_id).

The following diagram illustrates the hierarchy of the clients, with their commonly-supported APIs:

For details on the clients and their supported APIs, see BaseClient, ShellClient, andQueryClient in
the DFM Framework. These files are located in the following folder:

<UCMDB root directory>\UCMDBServer\deploy\ucmdb-docs\docs\eng\APIs\DDM_
Schema\webframe.html

Framework.getParameter (String parameterName)

In addition to retrieving information on the Trigger CI, you often need to retrieve an adapter parameter
value. For example:

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 56 of 503

Example of Retrieving the Value of the protocolType Parameter:

To retrieve the value of the protocolType parameter from the Jython script, use the following API:

protocolType = Framework.getParameterValue('protocolType')

Framework.reportError(String message) and Framework.reportWarning(String

message)

Some errors (for example, connection failure, hardware problems, timeouts) can occur during a script
run. When such errors are detected, Framework can report on the problem. Themessage that is
reported reaches the server and is displayed for the user.

Example of a Report Error and Message:

The following example illustrates the use of the reportError(<Error Msg>) API:

try:
 client = Framework.createClient(Framework.getTriggerCIData
(BaseClient.CREDENTIALS_ID))

except:
 strException = str(sys.exc_info()[1]).strip()
 Framework. reportError ('Connection failed: %s' % strException)

You can use either one of the APIs—Framework.reportError(String message),
Framework.reportWarning(String message)—to report on a problem. The difference between the
two APIs is that when reporting an error, the Probe saves a communication log file with the entire
session's parameters to the file system. In this way you are able to track the session and better
understand the error.

For details on error messages, see "Error Messages" on page 76.

Finding the Correct Credentials (for Connection

Adapters)

An adapter trying to connect to a remote system needs to try all possible credentials. One of the
parameters needed when creating a client is the credentials ID. The connection script gains access to
possible credential sets and tries them one by one using the Framework.getAvailableProtocols()
method. When one credential set succeeds, the adapter reports a CI connection object on the host of
this trigger CI (with the credentials ID that matches the IP) to the CMDB. Subsequent adapters can use

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 57 of 503

this connection object CI directly to connect to the credential set (that is, the adapters do not have to try
all possible credentials again).

Note: Access to sensitive data (passwords, private keys, and so on) is blocked for the following
protocol types:

sshprotocol, ntadminprotocol, as400protocol, vmwareprotocol, wmiprotocol, vcloudprotocol,
sapjmxprotocol, websphereprotocol, siebelgtwyprotocol, sapprotocol, ldapprotocol, udaprotocol,
ntcmdprotocol, snmpprotocol, jbossprotocol, telnetprotocol, powershellprotocol, sqlprotocol,
weblogicprotocol

Utilization of these protocol types should be done by using dedicated clients.

The following example shows how to obtain all entries of the SNMP protocol. Note that here the IP is
obtained from the Trigger CI data (# Get the Trigger CI data values).

The connection script requests all possible protocol credentials (# Go over all the protocol
credentials) and tries them in a loop until one succeeds (resultVector). For details, see the two-
phase connect paradigm entry in "Separating Adapters" on page 32.

Example

import logger
import netutils
import sys
import errorcodes
import errorobject

Java imports
from java.util import Properties
from com.hp.ucmdb.discovery.common import CollectorsConstants
from appilog.common.system.types.vectors import ObjectStateHolderVector
from com.hp.ucmdb.discovery.library.clients import ClientsConsts
from com.hp.ucmdb.discovery.library.scope import DomainScopeManager

TRUE = 1
FALSE = 0

def mainFunction(Framework, isClient, ip_address = None):
_vector = ObjectStateHolderVector()
errStr = ''
ip_domain = Framework.getDestinationAttribute('ip_domain')
Get the Trigger CI data values
ip_address = Framework.getDestinationAttribute('ip_address')

if (ip_domain == None):
ip_domain = DomainScopeManager.getDomainByIp(ip_address, None)

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 58 of 503

protocols = netutils.getAvailableProtocols(Framework,
ClientsConsts.SNMP_PROTOCOL_NAME, ip_address, ip_domain)
if len(protocols) == 0:

errStr = 'No credentials defined for the triggered ip'
logger.debug(errStr)
errObj = errorobject.createError(errorcodes.NO_CREDENTIALS_FOR_

TRIGGERED_IP, [ClientsConsts.SNMP_PROTOCOL_NAME], errStr)
return (_vector, errObj)

connected = 0
Go over all the protocol credentials
for protocol in protocols:

client = None
try:

try:
logger.debug('try to get snmp agent for: %s:%s' % (ip_

address, ip_domain))
if (isClient == TRUE):

properties = Properties()
properties.setProperty

(CollectorsConstants.DESTINATION_DATA_IP_ADDRESS, ip_address)
properties.setProperty

(CollectorsConstants.DESTINATION_DATA_IP_DOMAIN, ip_domain)
client = Framework.createClient(protocol, properties)

else:
properties = Properties()
properties.setProperty

(CollectorsConstants.DESTINATION_DATA_IP_ADDRESS, ip_address)
client = Framework.createClient(protocol, properties)

logger.debug('Running test connection queries')
testConnection(client)
Framework.saveState(protocol)
logger.debug('got snmp agent for: %s:%s' % (ip_address,

ip_domain))
isMultiOid = client.supportMultiOid()
logger.debug('snmp server isMultiOid state=%s'

%isMultiOid)

client.close()
client = None

except:
if client != None:

client.close()
client = None

logger.debugException('Unexpected SNMP_AGENT Exception:')
lastExceptionStr = str(sys.exc_info()[1]).strip()

finally:
if client != None:

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 59 of 503

client.close()
client = None

return (_vector, error)

Handling Exceptions from Java

Some Java classes throw an exception upon failure. It is recommended to catch the exception and
handle it, otherwise it causes the adapter to terminate unexpectedly.

When catching a known exception, in most cases you should print its stack trace to the log and issue a
proper message to the UI.

Note: It is very important to import the Java base exception class as shown in the following
example due to the presence of the base exception class in Python with the same name.

from java.lang import Exception as JException
try:

client = Framework.createClient(Framework.getTriggerCIData(BaseClient.CREDENTIALS_
ID))
except JException, ex:

process java exceptions only
Framework.reportError('Connection failed')
logger.debugException(str(ex))

 return

If the exception is not fatal and the script can continue, you should omit the call for the reportError()
method and enable the script to continue.

Troubleshooting Migration from Jython Version 2.1 to

2.5.3

Universal Discovery now uses Jython version 2.5.3. All out-of-the-box scripts have been properly
migrated. If you developed your own Jython scripts prior to this upgrade for use by Discovery, youmay
run into the following issues and have tomake the fixes indicated.

Note: Youmust be an experienced Jython developer to make these changes.

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 60 of 503

String Formatting

l Error message: TypeError: int argument required

l Possible cause:Using string formatting to decimal integer from string variable containing integer
data.

l Problematic Jython 2.1 code:

variable = "43"
print "%d" % variable

l Correct Jython 2.5.3 code:

variable = "43"
print "%s" % variable

or

variable = "43"
print "%d" % int(variable)

Checking String Type

The code below may not work correctly if input contains unicode strings:

l Problematic Jython 2.1 code: isinstance(unicodeStringVariable,'')

l Correct Jython 2.5.3 code: isinstance(unicodeStringVariable,basestring)

The comparison should be done with basestring to test whether an object is an instance of str
or unicode.

Non-ASCII character in file

l Error Message:
SyntaxError: Non-ASCII character in file 'x', , but no encoding declared; see
http://www.python.org/peps/pep-0263.html for details

l Correct Jython 2.5.3 code: (add this to the first line in the file)

coding: utf-8

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 61 of 503

Import sub-packages

l Error message:
AttributeError: 'module' object has no attribute 'sub_package_name'

l Possible cause:A sub-package is imported without explicitly specifying the name of sub-package
in the import statement.

l Problematic Jython 2.1 code:

import a
print dir(a.b)

The sub-package is not explicitly imported.

l Correct Jython 2.5.3 code:

import a.b

or

from a import b

Iterator Changes

Starting from Jython 2.2, the __iter__method is used to loop over a collection in the scope of a for-in
block. The iterator should implement the nextmethod, returning an appropriate element or throw the
StopIteration error if it reached the end of the collection. If the __iter__method is not implemented, the
getitemmethod is used instead.

Raising Exceptions

l Jython 2.1 method for raising exceptions is obsolete:
raise Exception, 'Failed getting contents of file'

l Recommended Jython 2.5.3 method for raising exceptions:
raise Exception('Failed getting contents of file')

Support Localization in Jython Adapters
Themulti-lingual locale feature enables DFM to work across different operating system (OS)
languages, and to enable appropriate customizations at runtime.

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 62 of 503

This section includes:

l "Add Support for a New Language" below

l "Change the Default Language" on the next page

l "Determine the Character Set for Encoding" on page 65

l "Define a New Job to OperateWith Localized Data" on page 65

l "Decode Commands Without a Keyword" on page 67

l "Work with Resource Bundles" on page 67

l "API Reference" on page 68

Add Support for a New Language

This task describes how to add support for a new language.

This task includes the following steps:

l "Add a Resource Bundle (*.properties Files)" below

l "Declare and Register the LanguageObject" on the next page

1. Add a Resource Bundle (*.properties Files)

Add a resource bundle according to the job that is to be run. The following table lists the DFM jobs
and the resource bundle that is used by each job:

Job
Base Name of Resource
Bundle

File Monitor by Shell langFileMonitoring

Host Resources and Applications by Shell langHost_Resources_By_
TTY, langTCP

Hosts by Shell using NSLOOKUP in DNS Server langNetwork

Host Connection by Shell langNetwork

Collect Network Data by Shell or SNMP langTCP

Host Resources and Applications by SNMP langTCP

Microsoft Exchange Connection by NTCMD, Microsoft msExchange

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 63 of 503

Job
Base Name of Resource
Bundle

Exchange Topology by NTCMD

MS Cluster by NTCMD langMsCluster

For details on bundles, see "Work with Resource Bundles" on page 67.

2. Declare and Register the Language Object

To define a new language, add the following two lines of code to the shellutils.py script, that
currently contains the list of all supported languages. The script is included in the
AutoDiscoveryContent package. To view the script, access the Adapter Management window.
For details, see Adapter Management Window in theUniversal CMDB Data Flow Management
Guide.

a. Declare the language, as follows:

LANG_RUSSIAN = Language(LOCALE_RUSSIAN, 'rus', ('Cp866', 'Cp1251'), (1049,),
866)

For details on class language, see "API Reference" on page 68. For details on the Class
Locale object, see http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Locale.html. You
can use an existing locale or define a new locale.

b. Register the language by adding it to the following collection:

LANGUAGES = (LANG_ENGLISH, LANG_GERMAN, LANG_SPANISH, LANG_RUSSIAN, LANG_
JAPANESE)

Change the Default Language

If the OS language cannot be determined, the default one is used. The default language is specified in
the shellutils.py file.

#default language for fallback
DEFAULT_LANGUAGE = LANG_ENGLISH

To change the default language, you initialize the DEFAULT_LANGUAGE variable with a different
language. For details, see "Add Support for a New Language" on the previous page.

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 64 of 503

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Locale.html

Determine the Character Set for Encoding

The suitable character set for decoding command output is determined at runtime. Themulti-lingual
solution is based on the following facts and assumptions:

1. It is possible to determine the OS language in a locale-independent way, for example, by running
the chcp command onWindows or the locale command on Linux.

2. Relation Language-Encoding is well known and can be defined statically. For example, the
Russian language has two of themost popular encoding: Cp866 and Windows-1251.

3. One character set for each language is preferable, for example, the preferable character set for
Russian language is Cp866. This means that most of the commands produce output in this
encoding.

4. Encoding in which the next command output is provided is unpredictable, but it is one of the
possible encoding for a given language. For example, when working with aWindows machine with
a Russian locale, the system provides the ver command output in Cp866, but the ipconfig
command is provided inWindows-1251.

5. A known command produces known key words in its output. For example, the ipconfig command
contains the translated form of the IP-Address string. So the ipconfig command output contains
IP-Address for the English OS, for the Russian OS, IP-Adresse for the GermanOS,
and so on.

Once it is discovered in which language the command output is produced (# 1), possible character sets
are limited to one or two (# 2). Furthermore, it is knownwhich key words are contained in this output
(# 5).

The solution, therefore, is to decode the command output with one of the possible encoding by
searching for a key word in the result. If the key word is found, the current character set is considered
the correct one.

Define a New Job to Operate With Localized Data

This task describes how to write a new job that can operate with localized data.

Jython scripts usually execute commands and parse their output. To receive this command output in a
properly decodedmanner, use the API for theShellUtils class. For details, see "Micro
Focus Universal CMDB (UCMDB)Web Service API Overview" on page 340.

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 65 of 503

This code usually takes the following form:

client = Framework.createClient(protocol, properties)
shellUtils = shellutils.ShellUtils(client)
languageBundle = shellutils.getLanguageBundle ('langNetwork',
shellUtils.osLanguage, Framework)
strWindowsIPAddress = languageBundle.getString('windows_ipconfig_str_ip_address')
ipconfigOutput = shellUtils.executeCommandAndDecode('ipconfig /all',
strWindowsIPAddress)
#Do work with output here

1. Create a client:

client = Framework.createClient(protocol, properties)

2. Create an instance of theShellUtils class and add the operating system language to it. If the
language is not added, the default language is used (usually English):

shellUtils = shellutils.ShellUtils(client)

During object initialization, DFM automatically detects machine language and sets preferable
encoding from the predefined Language object. Preferable encoding is the first instance appearing
in the encoding list.

3. Retrieve the appropriate resource bundle from shellclient using the getLanguageBundle
method:

languageBundle = shellutils.getLanguageBundle ('langNetwork',
shellUtils.osLanguage, Framework)

4. Retrieve a keyword from the resource bundle, suitable for a particular command:

strWindowsIPAddress = languageBundle.getString('windows_ipconfig_str_ip_
address')

5. Invoke the executeCommandAndDecodemethod and pass the keyword to it on theShellUtils
object:

ipconfigOutput = shellUtils.executeCommandAndDecode('ipconfig /all',
strWindowsIPAddress)

The ShellUtils object is also needed to link a user to the API reference (where this method is
described in detail).

6. Parse the output as usual.

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 66 of 503

Decode Commands Without a Keyword

The current approach for localization uses a keyword to decode all of the command output. For details,
see the step about retrieving a keyword from the resource bundle in "Define a New Job to OperateWith
Localized Data" on page 65.

However, another approach uses a keyword to decode the first command output only, and then
decodes further commands with the character set used to decode the first command. To do this, you
use the getCharsetName and useCharsetmethods of theShellUtils object.

The regular use case works as follows:

1. Invoke the executeCommandAndDecodemethod once.

2. Obtain themost recently used character set name through the getCharsetNamemethod.

3. Make shellUtils use this character set by default, by invoking the useCharsetmethod on the
ShellUtils object.

4. Invoke the execCmdmethod of ShellUtils one or more times. The output is returned with the
character set specified in the previous step. No additional decoding operations occur.

Work with Resource Bundles

A resource bundle is a file that takes a properties extension (*.properties). A properties file can be
considered a dictionary that stores data in the format of key = value. Each row in a properties file
contains one key = value association. Themain functionality of a resource bundle is to return a value
by its key.

Resource bundles are located on the Probemachine:
C:\hp\UCMDB\DataFlowProbe\runtime\probeManager\discoveryConfigFiles. They are
downloaded from the UCMDB Server as any other configuration file. They can be edited, added, or
removed, in the Resources window. For details, see Configuration File Pane in theUniversal CMDB
Data Flow Management Guide.

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 67 of 503

When discovering a destination, DFM usually needs to parse text from command output or file content.
This parsing is often based on a regular expression. Different languages require different regular
expressions to be used for parsing. For code to be written once for all languages, all language-specific
datamust be extracted to resource bundles. There is a resource bundle for each language. (Although it
is possible for a resource bundle to contain data for different languages, in DFM each resource bundle
contains data for one language only.)

The Jython script itself does not include hard coded, language-specific data (for example, language-
specific regular expressions). The script determines the language of the remote system, loads the
proper resource bundle, and obtains all language-specific data by a specific key.

In DFM, resource bundles take a specific name format: <base_name>_<language_
identifier>.properties, for example, langNetwork_spa.properties. (The default resource bundle
takes the following format: <base_name>.properties, for example, langNetwork.properties.)

The base_name format reflects the intended purpose of this bundle. For example, langMsCluster
means the resource bundle contains language-specific resources used by theMS Cluster jobs.

The language_identifier format is a 3-letter acronym used to identify the language. For example,
rus stands for the Russian language and ger for the German language. This language identifier is
included in the declaration of the Language object.

API Reference

This section includes:

l "The Language Class" on the next page

l "The executeCommandAndDecodeMethod" on the next page

l "The getCharsetNameMethod" on page 70

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 68 of 503

l "The useCharset Method" on the next page

l "The getLanguageBundle Method" on the next page

l "The osLanguage Field" on page 71

The Language Class

This class encapsulates information about the language, such as resource bundle postfix, possible
encoding, and so on.

Fields

Name Description

locale Java object which represents locale.

bundlePostfix Resource bundle postfix. This postfix is used in resource bundle file names to
identify the language. For example, the langNetwork_ger.properties bundle
includes a ger bundle postfix.

charsets Character sets used to encode this language. Each language can have several
character sets. For example, the Russian language is commonly encoded with the
Cp866 and Windows-1251 encoding.

wmiCodes The list of WMI codes used by theMicrosoft Windows OS to identify the language.
All possible codes are listed at http://msdn.microsoft.com/en-us/library/aa394239
(VS.85).aspx (the OSLanguage section). One of themethods for identifying the OS
language is to query theWMI class OS for the OSLanguage property.

codepage Code page used with a specific language. For example, 866 is used for Russian
machines and 437 for Englishmachines. One of themethods for identifying the OS
language is to retrieve its default codepage (for example, by the chcp command).

The executeCommandAndDecode Method

This method is intended to be used by business logic Jython scripts. It encapsulates the decoding
operation and returns a decoded command output.

Arguments

Name Description

cmd The actual command to be executed.

keyword The keyword to be used for the decoding operation.

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 69 of 503

http://msdn.microsoft.com/en-us/library/aa394239(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa394239(VS.85).aspx

Name Description

framework The Framework object passed to every executable Jython script in DFM.

timeout The command timeout.

waitForTimeout Specifies if client should wait when timeout is exceeded.

useSudo Specifies if sudo should be used (relevant only for UNIX machine clients).

language Enables specifying the language directly instead of automatically detecting a
language.

The getCharsetName Method

This method returns the name of themost recently used character set.

The useCharset Method

This method sets the character set on the ShellUtils instance, which uses this character set for initial
data decoding.

Arguments

Name Description

charsetName The name of the character set, for example, windows-1251 or UTF-8.

See also "The getCharsetNameMethod" above.

The getLanguageBundle Method

This method should be used to obtain the correct resource bundle. This replaces the following API:

Framework.getEnvironmentInformation().getBundle(...)

Arguments

Name Description

baseName The name of the bundle without the language suffix, for example, langNetwork.

language The language object. The ShellUtils.osLanguage should be passed here.

framework The Framework, common object which is passed to every executable Jython script in
DFM.

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 70 of 503

The osLanguage Field

This field contains an object that represents the language.

Record DFM Code
It can be very useful to record an entire execution, including all parameters, for example, when
debugging and testing code. This task describes how to record an entire execution with all relevant
variables. Furthermore, you can view extra debug information that is usually not printed to log files even
at the debug level.

To record DFM code:

1. Access Data Flow Management > Universal Discovery. Right-click the job whose runmust be
logged and select Go to Adapter to open the Adapter Management application.

2. Locate theExecution Options pane in theAdapter Configuration tab, as shown below.

3. Change theCreate communication log box toAlways. For details on setting logging options,
see Execution Options Pane in theUniversal CMDB Data Flow Management Guide.

The following example is the XML log file that is created when theHost Connection by Shell job
runs and theCreate communication logs box is set toAlways orOn Failure:

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 71 of 503

The following example shows themessage and stacktrace parameters:

Note: CDATA mechanism is used to store information retrieved from user environment in the
communication logs. When scan files get some characters or XML segments that cannot be
parsed by the CDATA mechanism, the information will be saved in binary format for further
troubleshooting purpose. Micro Focus Support will decode the binary data in the
communication logs to perform troubleshooting.

Jython Libraries and Utilities
Several utility scripts are used widely in adapters. These scripts are part of the AutoDiscovery
package and are located under:
C:\hp\UCMDB\DataFlowProbe\runtime\probeManager\discoveryScriptswith the other scripts
that are downloaded to the Probe.

Note: The discoveryScript folder is created dynamically when the Probe begins working.

To use one of the utility scripts, add the following import line to the import section of the script:

import <script name>

The AutoDiscovery Python library contains Jython utility scripts. These library scripts are considered
DFM's external library. They are defined in the jythonGlobalLibs.xml file (located in the
Configuration Files folder).

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 72 of 503

Each script that appears in the jythonGlobalLibs.xml file is loaded by default at Probe startup, so
there is no need to use them explicitly in the adapter definition.

This section includes the following topics:

l "logger.py" below

l "modeling.py" on the next page

l "netutils.py" on the next page

l "shellutils.py" on page 75

logger.py

The logger.py script contains log utilities and helper functions for error reporting. You can call its
debug, info, and error APIs to write to the log files. Logmessages are recorded in
C:\hp\UCMDB\DataFlowProbe\runtime\log.

Messages are entered in the log file according to the debug level defined for the PATTERNS_DEBUG
appender in theC:\hp\UCMDB\DataFlowProbe\conf\log\probeMgrLog4j.properties file. (By
default, the level is DEBUG.) For details, see "Error Severity Levels" on page 80.

###

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 73 of 503

################ PATTERNS_DEBUG log
####################
###
log4j.category.PATTERNS_DEBUG=DEBUG, PATTERNS_DEBUG
log4j.appender.PATTERNS_DEBUG=org.apache.log4j.RollingFileAppender
log4j.appender.PATTERNS_
DEBUG.File=C:\hp\UCMDB\DataFlowProbe\runtime\log/probeMgr-patternsDebug.log
log4j.appender.PATTERNS_DEBUG.Append=true
log4j.appender.PATTERNS_DEBUG.MaxFileSize=15MB
log4j.appender.PATTERNS_DEBUG.Threshold=DEBUG
log4j.appender.PATTERNS_DEBUG.MaxBackupIndex=10
log4j.appender.PATTERNS_DEBUG.layout=org.apache.log4j.PatternLayout
log4j.appender.PATTERNS_DEBUG.layout.ConversionPattern=<%d> [%-5p] [%t] - %m%n
log4j.appender.PATTERNS_DEBUG.encoding=UTF-8

The info and error messages also appear in the Command Prompt console.

There are two sets of APIs:

l logger.<debug/info/warn/error>

l logger.<debugException/infoException/warnException/errorException>

The first set issues the concatenation of all its string arguments at the appropriate log level and the
second set issues the concatenation as well as issuing the stack trace of themost recently-thrown
exception, to providemore information, for example:

logger.debug('found the result')
logger.errorException('Error in discovery')

modeling.py

Themodeling.py script contains APIs for creating hosts, IPs, process CIs, and so on. These APIs
enable the creation of common objects andmake the codemore readable. For example:

ipOSH= modeling.createIpOSH(ip)
host = modeling.createHostOSH(ip_address)
member1 = modeling.createLinkOSH('member', ipOSH, networkOSH)

netutils.py

The netutils.py library is used to retrieve network and TCP information, such as retrieving operating
system names, checking if a MAC address is valid, checking if an IP address is valid, and so on. For
example:

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 74 of 503

dnsName = netutils.getHostName(ip, ip)
isValidIp = netutils.isValidIp(ip_address)
address = netutils.getHostAddress(hostName)

shellutils.py

The shellutils.py library provides an API for executing shell commands and retrieving the end status of
an executed command, and enables runningmultiple commands based on that end status. The library
is initialized with a Shell Client, and uses the client to run commands and retrieve results. For example:

ttyClient = Framework.createClient(Framework.getTriggerCIData
(BaseClient.CREDENTIALS_ID), Props)
clientShUtils = shellutils.ShellUtils(ttyClient)
if (clientShUtils.isWinOs()):
 logger.debug ('discovering Windows..')

Developer ReferenceGuide
Chapter 2: Developing Jython Adapters

Micro Focus Universal CMDB (10.33) Page 75 of 503

Chapter 3: Error Messages
This chapter includes:

Error Messages Overview 76

Error-Writing Conventions 76

Error Severity Levels 80

Error Messages Overview
During discovery, many errors may be uncovered, for example, connection failures, hardware
problems, exceptions, time-outs, and so on. These errors are displayed in the Universal Discovery
window whenever the regular discovery flow does not succeed. You can drill down from the Trigger CI
that caused the problem to view the error message itself.

DFM differentiates between errors that can sometimes be ignored (for example, an unreachable host)
and errors that must be dealt with (for example, credentials problems ormissing configuration or DLL
files). Moreover, DFM reports errors once, even if the same error occurs on successive runs, and
reports an error even it if occurs once only.

When creating a package, you can add appropriate messages as resources to the package. During
package deployment, themessages are also deployed in the correct location. Messages must conform
to conventions, as described in "Error-Writing Conventions" below.

DFM supports multi-language error messages. You can localize themessages you write so that they
appear in the local language.

For details on searching for errors, see "Discovery Progress and Results" in theUniversal CMDB Data
Flow Management Guide.

For details on setting communication logs, see "Execution Options Pane" in theUniversal CMDB Data
Flow Management Guide.

Error-Writing Conventions

l Each error is identified by an error message code and an array of arguments (int, String[]). A
combination of amessage code and an array of arguments defines a specific error. The array of

Micro Focus Universal CMDB (10.33) Page 76 of 503

parameters can be null.

l Each error code is mapped to a short messagewhich is a fixed string and a detailed message
which is a template string contains zero or more arguments. Matching is assumed between the
number of arguments in the template and the actual number of parameters.

Example of Error Message Code:

10234may represent an error with the short message:

Connection Error

and the detailedmessage:

Could not connect via {0} protocol due to timeout of {1} msec

where

{0} = the first argument: a protocol name

{1} = the second argument: the timeout length in msec

This section also includes the following topics:

l "Property File Content" below

l "Error Messages Property File" on the next page

l "Locale Naming Conventions" on the next page

l "Error Message Codes" on the next page

l "Unclassified Content Errors" on page 79

l "Changes in Framework" on page 79

Property File Content

A property file should contain two keys for each error message code. For example, for error 45:

l DDM_ERROR_MESSAGE_SHORT_45. Short error description.

l DDM_ERROR_MESSAGE_LONG_45. Long error description (can contain parameters, for
example, {0},{1}).

Developer ReferenceGuide
Chapter 3: Error Messages

Micro Focus Universal CMDB (10.33) Page 77 of 503

Error Messages Property File

A property file contains amap between an error message code and twomessages (short and detailed).

Once a property file is deployed, its data is merged with existing data, that is, new message codes are
added while old message codes are overridden.

Infrastructure property files are part of theAutoDiscoveryInfra package.

Locale Naming Conventions

l For the default locale: <file name>.properties.errors

l For a specific locale: <file name>_xx.properties.errors

where xx is the locale (for example, infraerr_fr.properties.errors or infraerr_en_
us.properties.errors).

Error Message Codes

The following error codes are included by default with Universal CMDB. You can add your own error
messages to this list.

Error Name
Error
Code Description

Internal 100-
199

Mostly resolved from exceptions thrown during Jython script runs

Connection 200-
299

Connection failed, no agent on target machine, destination unreachable,
and so on

Credential
Related

300-
399

Permission denied, connection attempt blocked due to a lack of
credentials

Timeout 400-
499

Time-out during connection/command

Unexpected or
Invalid Behavior

500-
599

Missing configuration files, unexpected interruptions, and so on

Information
Retrieval

600-
699

Missing information on target machines, failure querying agent for
information, and so on

Resources 700- Errors relating to out-of-memory or clients not released properly

Developer ReferenceGuide
Chapter 3: Error Messages

Micro Focus Universal CMDB (10.33) Page 78 of 503

Error Name
Error
Code Description

Related 799

Parsing 800-
899

Error parsing text

Encoding 900 Error in input, unsupported encoding

SQLRelated 901-
903,
924

Errors received from SQL operations

HTTP Related 904-
909

Errors generated during HTTP connections, parsed from HTTP error
codes.

Specific
Application

910-
923

Error reported due to application-specific problems, for example, wrong
LSOF version, NoQueueManagers found, and so on

Unclassified Content Errors

To support old content without causing a regression, the application and SDK relevant methods handle
errors of message code 100 (that is, unclassified script error) differently.

These errors are not grouped (that is, they are not considered as being errors of the same type) by their
message code but are grouped by the content of themessage. That is, if a script reports an error by the
old, deprecatedmethods (with amessage string and without an error code), all messages receive the
same error code, but in the application or in the SDK relevant methods, different messages are
displayed as different errors.

Changes in Framework

(com.hp.ucmdb.discovery.library.execution.BaseFramework)

The followingmethods are added to the interface:

l void reportError(int msgCode, String[] params);

l void reportWarning(int msgCode, String[] params);

l void reportFatal(int msgCode, String[] params);

The following oldmethods are still supported for backward compatibility purposes but aremarked as
deprecated:

Developer ReferenceGuide
Chapter 3: Error Messages

Micro Focus Universal CMDB (10.33) Page 79 of 503

l void reportError(String message);

l void reportWarning (String message);

l void reportFatal (String message);

Error Severity Levels
When an adapter finishes running against a trigger CI, it returns a status. If no error or warning is
reported, the status is Success.

Severity levels are listed here from the narrowest to widest scope:

Fatal Errors

This level reports serious errors such as a problem with the infrastructure, missing DLL files, or
exceptions:

l Failed generating the task (Probe is not found, variables are not found, and so on)

l It is not possible to run the script

l Processing of the results fails on the Server and the data is not written to the CMDB

Errors

This level reports problems that cause DFM not to retrieve data. Look through these errors as they
usually require some action to be taken (for example, increase time-out, change a range, change a
parameter, add another user credential, and so on).

l In cases where user interventionmay help, an error is reported, either a credentials or network
problem that may need further investigation. (These are not errors in discovery but in configuration.)

l Internal failure, usually because of unexpected behavior from the discoveredmachine or
application, for example, missing configuration files, and so on

Warnings

When a run is successful but theremay be non-serious problems that you should be aware of, DFM
marks the severity asWarning. You should look at these CIs to see whether data is missing before
beginning amore detailed debugging session.Warning can includemessages about the lack of an

Developer ReferenceGuide
Chapter 3: Error Messages

Micro Focus Universal CMDB (10.33) Page 80 of 503

installed agent on a remote host, or that invalid data caused an attribute to be calculated incorrectly.

l Missing connection agent (SNMP, WMI)

l Discovery succeeds, but not all available information is discovered

Developer ReferenceGuide
Chapter 3: Error Messages

Micro Focus Universal CMDB (10.33) Page 81 of 503

Chapter 4: Mapping Consumer-Provider
Dependencies
This chapter includes:

Dependency Discovery Overview 82

Configuration Signature Files 87

Search Connection Strings 91

Dependency Discovery Overview
Dependency mapping provides a flexible method of discovering relationships between deployable
components or running software. This method allows the use of user-defined dependency mapping
rules (using simple programming syntax), which the Universal Discovery process uses to
automatically discover dependencies.

A service can be either a business or IT service. A business service is a service that a business
provides to another business (B2B) or that one organization provides to another within a business (such
as payment processing). An IT service is a business service that an IT organization provides to support
business services or IT's own operations.

A deployable component is a software component that is deployed within running software, such as an
application server or web server. Examples of deployable components are JEE EAR components or a
schemawithin anOracle database. For the purpose of dependency discovery, running software is
considered to be a deployable component.

A provider deployable component delivers a service, and declares how other deployable components
can consume that service. A consumer deployable component "consumes" a service provided by a
provider deployable component. The dependency between these deployable components is a
consumer-provider dependency.

Note: The Dependency Signature File included in CP16 (or an earlier version) is obsolete and has
been replaced by Configuration Signature in CP 17.

For more information, see the following chapters:

l "Providers and Consumers" on the next page

l "Service Connection Point" on the next page

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 82 of 503

l "Configuration Signatures" on the next page

l "Dependency Mapping Flow" on the next page

Providers and Consumers

You connect to providers using connection strings. For example, if an Oracle database is a provider, to
connect to its services, youmight need:

l The IP address of themachine

l The SID

l The TCP port

These three pieces of information would comprise the connection strings required by a consumer,
which are needed to connect to a service offered by that provider. For example, an Oracle connection
string could contain the following information:

l IP addresses: 1.1.1.1, 2.2.2.2

l Port: 1521

l SID: abcd

A consumer is aware of at least one connection string for a provider, and this connection string is found
in a known location, such as a configuration document, a database table, Windows registry, and so on.
By searching through these locations, dependencies between consumers and providers can be
discovered.

If the connection strings of a provider are found in a certain configuration document, then the provider
and the container of the configuration document are connected with a consumer-provider relationship.

The process of discovering consumer-provider dependencies then becomes straightforward:
Connection strings from the provider are searched for in the consumer's configuration documents, and
the search results contain all configuration documents owned by the consumers of the specified
provider.

Service Connection Point

A service connection point (SCP) is a provider descriptor, which is configured in the consumer. The
SCP is used to discover the provider from the consumer and tomap dependency between them.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 83 of 503

An SCP saves the following information from the connection string:

l Service connection type: the provider type or protocol to connect the provider (required).

l Service host name: the host name of the provider (optional if the service IP address is specified).
The service host name should be able to be resolved into an IP address.

l Service IP address: the IP address of the provider (required, can be resolved from the service host
name).

l Service port: the listening port of the provider (required). A default port will be assigned according to
the connection type. For example: 80 for HTTP, 443 for HTTPS, and 1521 for Oracle.

l Service context: the context defined in the connection string. Service context varies in different
connection type. For example, service context can be the web context of HTTP or HTTPS
connection, the schema name or SID of a database, or the JNDI name of an EJB reference.

SCPs can be generated from configuration signatures or TCP connection snapshots. For more
information, see "Configuration Signatures" below.

Configuration Signatures

A different search term can be used for each configuration and provider type. These search terms are
defined in a configuration signature file.

A configuration signature is a rule that defines how to find connection strings of providers from process
command line, system environment variables, or configuration documents, and how to generate
service connection points from the connection strings.

For more information, see "Configuration Signature Files" on page 87.

Dependency Mapping Flow

This section provides a brief overview of the basic flow that occurs during dependency mapping:

1. The first service connection point (SCP) is generated from the service entry URL of the business
element.

2. Each service connection point triggers a new discovery job against the host and listening port if
their owner has direct or indirect consumer-provider relationship with the business element in the
scope.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 84 of 503

3. A running software instance and its deployable components are discovered. Their SCPs are also
generated.

At this step, the process first uses configuration signatures to discover the running software, and
then uses TCP connection if configuration signatures are unsuccessful. The process no longer
uses TCP connection if configuration signatures succeed.

4. The dependency job queries all discovered running software CIs against the IP address, listening
port, and service context in the SCPs generated in the previous step.

If one’s (provider) IP address, listening port, and service context match the corresponding data in
the other’s (consumer) SCP, the consumer-provider relationship is created between the two
running software CIs (or deployable components).

Note: The dependency mapping process also creates the containment relationship between
business element and its immediate next-hop.

5. Repeat from step 2 to discover the next hop.

The following diagram illustrates the dependency mapping flow and shows how the topology map is
updated during the process.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 85 of 503

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 86 of 503

Configuration Signature Files
This chapter introduces the content and structure of the configuration signature files.

Structure of a Configuration Signature File

The configuration signature file defines rules to find provider’s connection string in consumer’s
configurations. You can find the configuration signature file at UCMDB UI > Data Flow Management
> Adapter Management > Packages > ASM_Enhanced > Configuration Files >
ConfigurationFileSignature.xml.

The following example shows the content and structure of the configuration signature file:

<ConfigurationFileSignature>
<Application name="application1">

<PropertyFile name="properties file name">
…

</PropertyFile>
<Output>

<SCP type="ucmdb" host="${hostname}" port="${port}"/>
…

</Output>
</Application>
<Application cit="application2">

<CommandLine>
…

</CommandLine>
<Output>

<SCP type="${db.type}" host="${db.host}" context="${db.name}"/>
…

</Output>
</Application>
…

</ConfigurationFileSignature>

Rules can be grouped by running software name, product name, or CI Type. Each kind of running
software is defined as an <Application> element, and each <Application> element may contain one
or more configuration searchmethods and one <Output> element. The <Output> element defines how
to generate service end points from connection strings.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 87 of 503

The ConfigurationFileSignature.xsd file can help you understand the syntax of the configuration
signature file. This file locates in the same folder as the ConfigurationFileSignature.xml file.

The dependency job can search connection strings from command line or from the configuration
documents in the file system. For more information, see the following chapters:

l "Search Connection Strings" on page 91

l "Search Connection Strings" on page 91

Variables

Variables are used to generate service connection points. They can save connection strings from
difference sources. Variables can also help to find connections strings in configuration documents if
their names or locations are configurable.

Declaration

Variables do not need to be declared first. Except predefined variables, other variables are defined at
the first time they are assigned a value.

Naming

Variable names are case-sensitive. A variable name can be a string of any length that contains English
letters, digits, underscore (_), or dot (.).

Value

A variable can contain multiple values. Each variable valuemust be a string value. When a variable is
assigned with more than one value, the values are saved as an ordered list.

Predefined variables

Some variables are predefined to help with searching connection strings in command line or file
system:

l scp.type: The connection type or protocol of the trigger service connection point.

l scp.ip: The IP address of the trigger service connection point.

l scp.port: The listening port of the trigger service connection point.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 88 of 503

l scp.context: The context of the trigger service connection point.

l process.name: A list of process names of discovering running software.

l process.path: A list of process paths of discovering running software.

l process.<process name>.path: A list of process paths with specified name of discovering running
software. For example, variable process.tomcat.path saves the paths of all Tomcat processes
belong to current discovering running software.

Note: All process names are saved in lower case. OnWindows, the “.exe” file extension for
executable files is not needed.

Use

A variable can be used in a file name, file path, file content, property key, XPath, or regular expression.
The syntax to use a variable is ${<Variable name>}. For example, part of the connection stringmight
be the IP address(es) of the provider. To save the IP address(es) in the configuration document, you
can define a variable named IP_ADDRESS and use it in the expression in this way: ${IP_ADDRESS}.

Note: Variables that are used but are not assigned will be ignored or be treated as empty strings.
Such a variable may cause an error during the discovery.

Scope

The scope of all variables are inside an <Application> element.

Group

Variables defined in the same element are grouped. For example, some variables are defined as the
example below:

<CommandLine>
<Regex expr="\s*(\S+)=\s*(\S+).*">

<Variable name="name" group="1"/>
<Variable name="value" group="2"/>

</Regex>
<SystemVariable name="oracle_home" environmentName="ORACLE_HOME"/>
<SystemVariable name="tns_home" environmentName="TNS_ADMIN"/>

</CommandLine>

In this example, variable name and value are grouped. Variable oracle_home and tns_home are
standalone variables.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 89 of 503

When variables of the same group havemore than one values, and the variables are used in the same
element, they share the same iterator. Variables that are not in the same group use different iterators
when the expression is being resolved.

For example, the following expression uses two variables (path and file) to express the full path, and
each variable has multiple values.

<Path>${path}/${filename}</Path>

If the two variables are in the same variable group, this expression will be resolved to a string list as
follows:

<path1>/<filename1>, <path2>/<filename2>, <path3>/<filename3> …

If the two variables are not in the same variable group, this expression will be resolved to the following:

<path1>/<filename1>, <path1>/<filename2>, <path1>/<filename3> …
<path2>/<filename1>, <path2>/<filename2>, <path2>/<filename3> …
<path3>/<filename1>, <path3>/<filename2>, <path3>/<filename3> …

Note: A grouped variable should have the same number of values as the other variables in the
same variable group. The only exception is that the variable has only one value.

Assignment

Configuration signature supports several different ways to assign one or more values to a variable:

l Get value from the system environment variable: <SystemVariable>.

l Get value from a property file by specified property key: <Property> or <PropertyVariable>.

l Get values from an XML file by using XPath expression: <XPath> or <XPathVariable>.

l Get values from a string by using regular expression: <Regex>. Can be embedded in other sources
of variables.

Default Values

Variables can have default values. When the specified value is not found for a variable, the default
value will be assigned. If the default value is not defined in this case, the signature processor ignores all
ungrouped variables and assigns an empty string to grouped variables tomake the lengths of their
value lists consistent.

Note: For embedded variables, if their parent does not match its condition or has no result, the
whole block of variables will be ignored and the default value will not be assigned.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 90 of 503

Search Connection Strings
Each application can havemultiple rules for searching connection strings. There is no restriction on the
sequence of the rules. The rules are processed in the order as they appear in the configuration signature
file. Variables defined in rules can be reused or be assigned with more values in all remaining rules in
the same application.

Search connection strings from command line

The following example shows a sample configuration signature used to search connection strings from
command line.

<CommandLine>
<Regex expr="\s*(\S+)=\s*(\S+).*">

<Variable name="name" group="1"/>
<Variable name="value" group="2"/>

</Regex>
<SystemVariable name="oracle_home" environmentName="ORACLE_HOME"/>
<SystemVariable name="tns_home" environmentName="TNS_ADMIN"/>
<Execute cmdline="%windir%\system32\inetsrv\appcmd.exe" os="win">

<Regex expr='\s+(\S+${scp.type}/(*|${scp.ip}):${scp.port}\S+)'>
<Variable name="siteName" group="1"/>

</Regex>
</Execute>

</CommandLine>

In this example, the <CommandLine> element is used to define rules to search connection strings from
command lines or system variables. It can contain the following elements:

l <Regex>: extract connection strings by using a regular expression.

l <SystemVariable>: get values from the system environment variables.

l <Execute>: execute a shell command on the remotemachine, and then use a regular expression to
get connection strings.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 91 of 503

Search connection strings from configuration documents

The following example demonstrates the content of a configuration signature file used to search
connection strings from configuration documents.

<TextFile name="${filename}*.loc">
<FileLocations>

<Path>${pluginPath}</Path>
<Path os="win" includeSub="true">C:\Windows\System*</Path>

</FileLocations>
...

</TextFile>
<XmlFile name=">plugin.xml" collect="true">

<FileContent>${fileContent}</FileContent>
...

</XmlFile>

To search connection strings from configuration documents, configuration signature uses several
elements to define rules:

l <TextFile>: get strings from a generic text configuration document.

l <PropertyFile>: get strings from a property file by using specified property key.

l <XmlFile>: get strings from an XML-format configuration document.

l <CustomFile>: get strings from a file by using a custom script.

Each of these “File” elements requires a file name, which can use variables. When the collect
attribute is set to true (which is by default false), the file will be reported to UCMDB as a
ConfigurationDocument CI with file name, full path, and file content. It is useful for troubleshooting. The
first child element of a “File” element should be either <FileLocations> or <FileContent>.

<FileLocations>

The <FileLocations> element can contain one or more file paths, which indicate the full paths to
search the specified configuration documents. The <FileLocations> element supports the use of
wildcard variables with multiple values for file names or file paths, and the processor will try to find all
resolved paths and file names in the destination file system.

The <Path> element can use the os attribute as the <CommandLine> element to filter result by operation
system. Another optional attribute of the <Path> element is includeSub. When this attribute is set to
true, the processor will search the specified file in the specified path and all subdirectories.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 92 of 503

In the above example, if the filename and pluginPath variables are not in the same variable group and
both variables have two saved values, and the destination operation system is Windows. The
processor will try to search following configuration documents:

<pluginPath1>/<filename1>*.loc
<pluginPath2>/<filename2>*.loc
<pluginPath1>/<filename2>*.loc
<pluginPath2>/<filename1>*.loc
C:\Windows\System*\<filename1>*.loc
C:\Windows\System*\<filename2>*.loc

If the two variables are grouped and the destination operation system is not Windows, only the first two
paths will be searched.

<FileContent>

Unlike the <FileLocations> element, the <FileContent> element does not read the configuration
document from file system. Instead, it directly specifies the content to be search for by using
expressions. In this case, wildcard is not allowed in the file name attribute. Usually, the
<FileContent> element is used when the result of the shell command defined in an <Execute>
element is a property or XML file.

<TextFile>

The <TextFile> element is a basic “File” element. You can use this element to parse any type of
configuration document. This element only supports the <Regex> sub element to get connection strings
by using a regular expression, as shown in the following example:

<TextFile name="text file">
<FileLocations> or <FileContent>
<Regex expr='(.*)\plugin-cfg.xml'>

<Variable name="pluginHome" group="1"/>
</Regex>

</TextFile>

<PropertyFile>

The <PropertyFile> element is used to parse property files, which save configuration in the
"<key>=<value>" format. This element supports three types of sub elements:

l <Property>: get strings from a specified key, and then use the embedded Regex element to get
values.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 93 of 503

l <PropertyVariable>: directly assign the value for specified key to a variable.

l <Regex>: regular expressions are also supported for a property file.

The following example demonstrates the content of the <PropertyFile> element:

<PropertyFile name="file.properties">
<FileLocations> or <FileContent>
<Property name="url" key="remoteUrl">

<Regex expr="(https?)//(.*)">
<Variable name="protocol" group="1"/>
<Variable name="hostname" group="2"/>

</Regex>
</Property>
<PropertyVariable name="port" key="serverPort" defaultValue="80"/>
<Regex expr="…">

...
</Regex>

</PropertyFile>

<XmlFile>

The <XmlFile> element is used to parse an XML-format configuration documents. This element
supports XPath 2.0 expressions and regular expressions by using the following sub elements
respectively:

l <XPath>: get XML element by XPath, and then use relative XPath and regular expressions to get
values.

l <XPathVariable>: directly assign the value of an XPath expression to a variable.

The following example demonstrates the content of the <XmlFile> element:

<XmlFile name="config.xml">
<FileLocations> or <FileContent>
<Xpath xpath="//datasources/datasource/connectionUrl">

<Variable name="datasourceName" relativePath="../@name"
<Regex expr='jdbc:oracle:(thin|oci)://([\w.]*):?(\d*)>

<Variable name="protocol" group="1"/>
<Variable name="hostname" group="2"/>
<Variable name="port" group="3" defaultValue="1521"/>

</Regex>
</XPath>

</XmlFile>

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 94 of 503

<CustomFile>

The <CustomFile> element is used to parse those non-standard configuration documents (such as
httpd.conf of Apache) by using Jython script.

The following example demonstrates the content of the <CustomFile> element:

<CustomFile name="httpd.conf" plugin="config_parser_apache">
<FileLocations>

<Path>${home}/conf/</Path>
<Path>${home}/httpd/conf/</Path>

</FileLocations>
</CustomFile>

The plugin attribute specifies the Jython script name. The file extension .py can be omitted. The
script should be deployed as a normal job scripts under the discoveryScripts folder of a package. The
script should define amethod as follows:

def parseConfigFile(shell, configfilePath, configFileName, fileContent,
variableResolver)

Parameters

l shell: the shell utility instance, which can execute commands by remote shell. It has the following
methods:

o execCmd(cmdLine): execute command line by shell, and returns its result.

o getOsType(): get the operation system type.

o isWinOs(): check if the destination operation system is Windows.

o getOsVersion(): get the version of the operation system.

o getOsLanguage(): get the language of the operation system.

o getCommandSeparator(): get the command line separator of the operation system.

For more information, see the content of shellUtils.py, which is available underUCMDB UI
> Data Flow Management > Adapter Management > Packages > AutoDiscoveryContent >
Scripts.

l configFilePath: the full path of the configuration document to parse.

l configFileName: the file name of the configuration document.

l fileContent: the full content of the configuration file as string.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 95 of 503

l variableResolver: the variable utility instance, which is used to assign value to variables and get
values from existing variables. It has the followingmethods:

o add(name,value): add the value to the variable with the specified name.

o addGroup(names, values): add values to the variables with the specified names as a variable
group. Names and values should be iterable and should have the same length.

o get(name): get the values of the variable with the given name. Always returns the result as a
list. If the variable is not defined, themethod will return an empty list.

Generate Service Connection Points

Each <Application> element must contain one <Output> vector to generate connection string points
for the discovering running software. The following example demonstrates the content of the <Output>
element:

<Output>
<SCP type="${client_protocol}" host="${client_host}" />
<SCP type="sqlserver" host="${sqlserver_host}" port="${sqlserver_port}"

context="${sqlserver_database}"/>
<SCP type="db2" host="${db2_host}" port="${db2_port}" context="${db2_

database}"/>
<SCP type="oracle" host="${oracle_host}" port="${oracle_port}"

context="${oracle_database}"/>
<SCP type="websphere" host="${websphere_host}" port="${websphere_port}"/>

</Output>

The <Output> element can have one or more <SCP> elements. Each <SCP> element defines a set of
service connection points by collected connection strings or predefined string constant. <SCP> has four
attributes:

l type: the service connection type (required).

l host: the host name or destination IP address of the service connection point (required). Host
names will be resolved to IP addresses by the remote shell.

l port: the port number of the service connection point (optional for predefined service connection
type, but required for custom connection types). A default port number will be assigned according to
its connection type if predefined. For example, 80 for HTTP, 443 for HTTPS, 1521 for Oracle, and
1433 for Microsoft SQL Server (which is defined as the sqlserver type).

l context: the context of the service connection point (optional).

The whole service connection point set will be ignored if any required attribute has no value.

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 96 of 503

Predefined Service Connection Type and their default port numbers:

Service Connection Type Default Port Number

http 80

https 443

oracle 1521

sqlserver 1433

postgres 5432

db2 50000

websphere 9080

oam 5575

isapi 8009

mq 1414

Developer ReferenceGuide
Chapter 4: Mapping Consumer-Provider Dependencies

Micro Focus Universal CMDB (10.33) Page 97 of 503

Chapter 5: Developing Generic Database
Adapters
This chapter includes:

Generic Database Adapter Overview 99

TQLQueries for the Generic Database Adapter 99

Reconciliation 100

Hibernate as JPA Provider 101

Prepare for Adapter Creation 103

Prepare the Adapter Package 107

Configure the Adapter –Minimal Method 110

Configure the Adapter – AdvancedMethod 115

Implement a Plug-in 119

Deploy the Adapter 122

Edit the Adapter 122

Create an Integration Point 123

Create a View 123

Calculate the Results 123

View the Results 124

View Reports 124

Enable Log Files 124

Use Eclipse toMap Between CIT Attributes and Database Tables 124

Adapter Configuration Files 132

Out-of-the-Box Converters 159

Plug-ins 165

Configuration Examples 165

Adapter Log Files 174

External References 176

Troubleshooting and Limitations – Developing Generic Database Adapters 176

Micro Focus Universal CMDB (10.33) Page 98 of 503

Generic Database Adapter Overview
The purpose of the generic database adapter platform is to create adapters that can integrate with
relational databasemanagement systems (RDBMS) and run TQL queries and population jobs against
the database. The RDBMS supported by the generic database adapter are Oracle, Microsoft SQL
Server, andMySQL.

This version of the database adapter implementation is based on a JPA (Java Persistence API)
standard with the Hibernate ORM library as the persistence provider.

TQL Queries for the Generic Database Adapter
For population jobs, every required layout of a CI must be checked in the Layout Settings Dialog Box in
theModeling Studio. For details, seeQuery Node/Relationship Properties Dialog Box in theUniversal
CMDB Modeling Guide. It is important to note that a CI might require an attribute to be identified, and
without those attributes the CI will fail to be added to UCMDB.

The following limitations exist on the TQL queries calculated by the Generic Database Adapter only:

l subgraphs are not supported

l compound relationships are not supported

l cycles or cycle parts are not supported

The following TQL query is an example of a cycle:

l Function layout is not supported.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 99 of 503

l 0..0 cardinality is not supported.

l The Join relationship is not supported.

l Qualifier conditions are not supported.

l To connect between two CIs, a relationship in the form of a table or foreign key must exist in the
external database source.

Reconciliation
Reconciliation is carried out as part of the TQL calculation on the adapter side. For reconciliation to
occur, the CMDB side is mapped to a federated entity called reconciliation CIT.

Mapping. Each attribute in the CMDB is mapped to a column in the data source.

Althoughmapping is done directly, transformation functions on themapping data are also supported.
You can add new functions through the Java code (for example, lowercase, uppercase). The purpose of
these functions is to enable value conversions (values that are stored in the CMDB in one format and in
the federated database in another format).

Note:

l To connect the CMDB and external database source, an appropriate associationmust exist in
the database. For details, see "Prerequisites" on page 103.

l Reconciliation with the CMDB ID is also supported

l Reconciliation with the Global ID is also supported.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 100 of 503

Hibernate as JPA Provider
Hibernate is an object-relational (OR)mapping tool, which enables mapping Java classes to tables
over several types of relational databases (for example, Oracle andMicrosoft SQL Server). For details,
see "Functional Limitations" on page 177.

In an elementary mapping, each Java class is mapped to a single table. More advancedmapping
enables inheritancemapping (as can occur in the CMDB database).

Other supported features includemapping a class to several tables, support for collections, and
associations of types one-to-one, one-to-many, andmany-to-one. For details, see "Associations" on
the next page below.

For our purposes, there is no need to create Java classes. Themapping is defined from the CMDB
class model CITs to the database tables.

This section also includes the following topics:

l "Examples of Object-Relational Mapping" below

l "Associations" on the next page

l "Usability" on page 103

Examples of Object-Relational Mapping

The following examples describe object-relational mapping:

Example of One CMDB Class Mapped to One Database Table:

Class M1, with attributes A1, A2, and A3, is mapped to table 1 columns c1, c2, and c3. This means
that any M1 instance has amatching row in table 1.

Example of One CMDB Class Mapped to Two Database Tables:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 101 of 503

Example of Inheritance:

This case is used in the CMDB, where each class has its own database table.

Example of Single Table Inheritance with Discriminator:

An entire hierarchy of classes is mapped to a single database table, whose columns comprise a
super-set of all attributes of themapped classes. The table also contains an additional column
(Discriminator), whose value indicates which specific class should bemapped to this entry.

Associations

There are three types of associations: one-to-many, many-to-one andmany-to-many. To connect
between the different database objects, one of these associations must be defined by using a foreign

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 102 of 503

key column (for the one-to-many case) or amapping table (for themany-to-many case).

Usability

As the JPA schema is very extensive, a streamlined XML file is provided tomake it easier to define
associations.

The use case for using this XML file is as follows: Federated data is modeled into one federated class.
This class has many-to-one relations to a non-federated CMDB class. In addition, there is only one
possible relation type between the federated class and the non-federated class.

Prepare for Adapter Creation
This task describes the preparations that are necessary for creating an adapter.

Note: You can view samples for the Generic DB adapter in the UCMDB API. Specifically, the
DDMi Adapter sample contains a complicated orm.xml file, as well as the implementations for
some plug-in interfaces.

This task includes the following steps:

l "Prerequisites" below

l "Create a CI Type" on page 105

l "Create a Relationship" on page 105

1. Prerequisites

To validate that you can use the database adapter with your database, check the following:

o The reconciliation classes and their attributes (also known as multinodes) exist in the
database. For example, if the reconciliation is run by node name, verify that there is a table that
contains a columnwith node names. If the reconciliation is run according to node cmdb_id,
verify that there is a columnwith CMDB IDs that matches the CMDB IDs of the nodes in the
CMDB. For details on reconciliation, see "Reconciliation" on page 100.

ID NAME IP_ADDRESS

31 BABA 16.59.33.60

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 103 of 503

ID NAME IP_ADDRESS

33 ext3.devlab.ad 16.59.59.116

46 LABM1MAM15 16.59.58.188

72 cert-3-j2ee 16.59.57.100

102 labm1sun03.devlab.ad 16.59.58.45

114 LABM2PCOE73 16.59.66.79

116 CUT 16.59.41.214

117 labm1hp4.devlab.ad 16.59.60.182

o To correlate two CITs with a relationship, theremust be correlation data between the CIT
tables. The correlation can be either by a foreign key column or by amapping table. For
example, to correlate between node and ticket, theremust be a column in the ticket table that
contains the node ID, a column in the node table with the ticket ID that is connected to it, or a
mapping table whose end1 is the node ID and end2 is the ticket ID. For details on correlation
data, see "Hibernate as JPA Provider" on page 101.

The following table shows the foreign key NODE_ID column:

NODE_
ID

CARD_
ID CARD_TYPE CARD_NAME

2015 1 Serial Bus Controller Intel�82801EB USB Universal Host
Controller

3581 2 System Intel�631xESB/6321ESB/3100 Chipset
LPC

3581 3 Display ATI ES1000

3581 4 Base System
Peripheral

HP ProLiant iLO 2 Legacy Support Function

o Each CIT can bemapped to one or more tables. Tomap one CIT tomore than one table, check
that there is a primary table whose primary key exists in the other tables, and is a unique value
column.

For example, a ticket is mapped to two tables: ticket1 and ticket2. The first table has
columns c1 and c2 and the second table has columns c3 and c4. To enable them to be
considered as one table, bothmust have the same primary key. Alternatively, the first table
primary key can be a column in the second table.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 104 of 503

In the following example, the tables share the same primary key called CARD_ID:

CARD_ID CARD_TYPE CARD_NAME

1 Serial Bus Controller Intel�82801EB USB Universal Host Controller

2 System Intel�631xESB/6321ESB/3100 Chipset LPC

3 Display ATI ES1000

4 Base System Peripheral HP ProLiant iLO 2 Legacy Support Function

CARD_ID CARD_VENDOR

1 Hewlett-Packard Company

2 (Standard USB Host Controller)

3 Hewlett-Packard Company

4 (Standard system devices)

5 Hewlett-Packard Company

2. Create a CI Type

In this step you create a CIT that represents the data in the RDBMS (the external data source).

a. In UCMDB, access the CI TypeManager and create a new CI Type. For details, see How to
Create a CI Type in theUniversal CMDB Modeling Guide.

b. Add the necessary attributes to the CIT, such as last access time, vendor, and so on. These
are the attributes that the adapter will retrieve from the external data source and bring into
CMDB views.

3. Create a Relationship

In this step you add a relationship between the UCMDB CIT and the new CIT that represents the
data from the external data source.

Add appropriate, valid relationships to the new CIT. For details, see Add/Remove Relationship
Dialog Box in theUniversal CMDB Modeling Guide.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 105 of 503

Note: At this stage, you cannot yet view the federated data or populate the external data, as
you have not yet defined themethod for bringing in the data.

Example of Creating a Containment Relationship:

a. In the CIT Manager, select the two CITs:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 106 of 503

b. Create aContainment relationship between the two CITs:

Prepare the Adapter Package
In this step, you locate and configure the Generic DB adapter package.

1. Locate the db-adapter.zip package in theC:\hp\UCMDB\UCMDBServer\content\adapters
folder.

2. Extract the package to a local temporary directory.

3. Edit the adapter XML file:

o Open the discoveryPatterns\db_adapter.xml file in a text editor.

o Locate the adapter id attribute and replace the name:

<pattern id="MyAdapter" displayLabel="My Adapter"
xsi:noNamespaceSchemaLocation="../../Patterns.xsd" description="Discovery
Pattern Description"

schemaVersion="9.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" displayName="UCMDB API Population">

If the adapter supports population, the following capability should be added to the <adapter-
capabilities> element:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 107 of 503

 <support-replicatioin-data>
 <source>
 <changes-source>
 </source>
 </support-replicatioin-data>

The display label or ID appears in the list of adapters in the Integration Point pane in Universal
CMDB.

When creating aGeneric DB Adapter it is not necessary to edit the changes-source tag in the
support-replicatioin-data tag. If the FcmdbPluginForSyncGetChangesTopology plug-in is
implemented, the changed topology from the last run will be returned. If the plug-in is not
implemented, the full topology will be returned and the auto-delete will be performed according
to the returned CIs.

For details about populating the CMDB with data, see "Integration Studio Page" in the
Universal CMDB Data Flow Management Guide.

o If the adapter is using themapping engine from version 8.x (meaning that it is not using the new
reconciliationmapping engine), replace the following element:

<default-mapping-engine>

with:

<default-mapping-engine>com.hp.ucmdb.federation.
mappingEngine.AdapterMappingEngine</default-mapping-engine>

To revert to the new mapping engine, return the element to the following value:

<default-mapping-engine>

o Locate the category definition:

<category>Generic</category>

Change theGeneric category name to the category of your choice.

Note: Adapters whose categories are specified as Generic are not listed in the Integration
Studio when you create a new integration point.

o The connection to the database can be described using a user name (schema), password,
database type, database host machine name, and database name or SID.

For this type of connection, parameters have the following elements in the parameter section
of the adapter's XML file:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 108 of 503

<parameters>
<!--The description attribute may be written in simple text or HTML.-

->
<!--The host attribute is treated as a special case by UCMDB-->
<!--and will automatically select the probe name (if possible)-->
<!--according to this attribute's value.-->
<!--Display name and description may be overwritten by I18N values-->

 <parameter name="host" display-name="Hostname/IP" type="string"
description="The host name or IP address of the remote machine"
mandatory="false" order-index="10" />
 <parameter name="port" display-name="Port" type="integer"
description="The remote machine's connection port" mandatory="false"
order-index="11" />
 <parameter name="dbtype" display-name="DB Type" type="string"
description="The type of database" valid-
values="Oracle;SQLServer;MySQL;BO" mandatory="false" order-
index="13">Oracle</parameter>
 <parameter name="dbname" display-name="DB Name/SID" type="string"
description="The name of the database or its SID (in case of Oracle)"
mandatory="false" order-index="13" />
 <parameter name="credentialsId" display-name="Credentials ID"
type="integer" description="The credentials to be used" mandatory="true"
order-index="12" />
</parameters>

Note: This is the default configuration. Therefore, the db_adapter.xml file already contains
this definition.

There are situations in which the connection to the database cannot be configured in this way.
For example, connecting to Oracle RAC or connecting using a database driver other than the one
supplied with the CMDB.

For these situations, you can describe the connection using user name (schema), password,
and a connection URL string.

To define this, edit the adapter's XML parameters section as follows:

<parameters>
<!--The description attribute may be written in simple text or HTML.-->
<!--The host attribute is treated as a special case by CMDBRTSM-->
<!--and will automatically select the probe name (if possible)-->
<!--according to this attribute's value.-->
<!--Display name and description may be overwritten by I18N values-->

 <parameter name="url" display-name="Connection String" type="string"
description="The connection string to connect to the database"
mandatory="true" order-index="10" />
 <parameter name="credentialsId" display-name="Credentials ID"

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 109 of 503

type="integer" description="The credentials to be used" mandatory="true"
order-index="12" />
</parameters>

An example of a URL that connects to anOracle RAC using the out-of-the- box Data Direct
driver is:
jdbc:mercury:oracle://labm3amdb17:1521;ServiceName=RACQA;AlternateServers=
(labm3amdb18:1521);LoadBalancing=true.

4. In the temporary directory, open the adapterCode folder and renameGenericDBAdapter to the
value of adapter id that was used in the previous step.

This folder contains the adapter's configuration, for example, the adapter name, the queries and
classes in the CMDB, and the fields in the RDBMS that the adapter supports.

5. Configure the adapter as required. For details, see "Configure the Adapter –Minimal Method"
below.

6. Create a *.zip file with the same name as you gave to the adapter id attribute, as described in
the step "Edit the adapter XML file:" on page 107.

Note: The descriptor.xml file is a default file that exists in every package.

7. Save the new package that you created in the previous step. The default directory for adapters is:
C:\hp\UCMDB\UCMDBServer\content\adapters.

Configure the Adapter – Minimal Method
The simplified (minimal) method is amethod for creating the simplifiedConfiguration.xml mapping
file that is used by the adapter. This method enables a basic population or federation of a single CIT.

The instructions provided in this section describes amethod of mapping the class model for certain CI
Types in the CMDB to an RDBMS.

All of the configuration files mentioned in this section are located in the db-adapter.zip package in the
C:\hp\UCMDB\UCMDBServer\content\adapters folder that you extracted in "Prepare the Adapter
Package" on page 107.

Note: The orm.xml file that is automatically generated as a result of running this method is a good
example that you can use when working with the advancedmethod.

You would use this minimal method when you need to:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 110 of 503

l Federate/populate a single node such as a node attribute.

l Demonstrate the Generic Database Adapter capabilities.

This method:

l Supports one-node federation/population only

l Supports many-to-one virtual relationships only

Configure the adapter.conf File

To change the settings in the adapter.conf file so that the adapter uses the simplified configuration
method:

1. Open the adapter.conf file in a text editor.

2. Locate the following line: use.simplified.xml.config=<true/false>.

3. Change it to use.simplified.xml.config=true.

Example: Populating a Node and IP Address using the

Simplified Method

This example demonstrates populating aNode related by a containment link to IP Address into
UCMDB. The RDBMS has a table named simpleNode that contains data on the computer name,
computer node, and the IP address of the computer.

The content of the simpleNode table is shown below:

The population is performed in three stages, as follows:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 111 of 503

1. "Create the simplifiedConfiguration.xml" below

2. "Create the TQL" on the next page

3. "Create an Integration Point" on page 114

Create the simplifiedConfiguration.xml

Create the simplifiedConfiguration.xml as follows:

1. Create a cmdb-class entity as follows:

<cmdb-class cmdb-class-name="node" default-table-name="simpleNode">

The CI Type is node and the RDBMS table name is simpleNode.

2. Set the primary-key of the table as follows:

<primary-key column-name="host_id"/>

This primary key is equivalent to entity id in the orm.xml file.

3. Set the reconciliation-by-two-nodes rule as follows:

<reconciliation-by-two-nodes connected-node-cmdb-class-name="ip_address" cmdb-
link-type="containment">

This tag defines the relation between theNode and the IpAddressCI types. The relation type is
Containment link. The reconciliation is done by the two connected CI Types. The attribute
mapping of the connected node (in this case IpAddress) is defined in the connected-node
attribute.

4. Add the or condition between the reconciliation attributes as follows:

<or is-ordered="true">

This tag defines anOR relationship between the reconciliation attributes, meaning the first
reconciliation attribute that is true sets the whole reconciliation rule to true.

5. Add the following attributes:

<attribute cmdb-attribute-name="name" column-name="host_name" ignore-
case="true"/>

This tag sets amapping between the node.name in the UCMDB to the column host_name in the
simpleNode table.

Do the samewith data_note attribute:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 112 of 503

<attribute cmdb-attribute-name="data_note" column-name="note" ignore-
case="true"/>

Add the connected node attribute:

<connected-node-attribute cmdb-attribute-name="name" column-name="ip_address"/>

This tag sets amapping between the ip_address.name to the column ip_address in the
simpleNode table.

6. Close the opened tag by order:

</or>

</reconciliation-by-two-nodes>

</cmdb-class>

The contents of the simplifiedConfiguration.xml file now appear as follows:

<?xml version="1.0" encoding="UTF-8"?>
<generic-db-adapter-config xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:noNamespaceSchemaLocation="../META-
CONF/simplifiedConfiguration.xsd">

<cmdb-class cmdb-class-name="node" default-table-name="simpleNode">
<primary-key column-name="host_id"/>

<reconciliation-by-two-nodes connected-node-cmdb-class-name="ip_address" cmdb-
link-type="containment">

<or is-ordered="true">
<attribute cmdb-attribute-name="name" column-name="host_name" ignore-

case="true"/>
<attribute cmdb-attribute-name="data_note" column-name="note" ignore-

case="true"/>
<connected-node-attribute cmdb-attribute-name="name" column-name="ip_

address"/>
</or>
</reconciliation-by-two-nodes>

</cmdb-class>
</generic-db-adapter-config>

Create the TQL

The TQL is a node connected by a containment link to ip_address. The node should bemarked as
root, as shown below.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 113 of 503

To create the TQL:

1. Go toModeling > Modeling Studio.

2. Click theNew button and create a new query.

3. Go to the CI Types tab and drag the Node CI Type and IpAddress CI Type to the TQL screen.

4. Connect Node and IpAddresswith a Containment relationship.

5. Right-click on theNode element and chooseQuery Node Properties.

6. ChangeElement name toRoot.

7. Go to theElement Layout tab. Select Specific Attributes as the Attributes condition. Choose
Name andNote from the Available Attributes window andmove them to the Specific Attributes
window.

8. Right-click on the IpAddress element and chooseQuery Node Properties.

9. Go to theElement Layout tab. Select Specific Attributes as the Attributes condition. Choose
Name from the Available Attributes window andmove it to the Specific Attributes window.

10. Save the TQL.

Create an Integration Point

Create the Integration Point as follows:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 114 of 503

1. Go toData Flow Management > Integration Studio, and click theNew Integration Point
button.

2. Insert the details of the Integration Point and click OK.

3. In the Population tab, select theNew Integration Job button, and add the TQL previously
created.

4. Save the Integration Point and click theRun Full Synchronization button.

Configure the Adapter – Advanced Method
These configuration files are located in the db-adapter.zip package in the
C:\hp\UCMDB\UCMDBServer\content\adapters folder that you extracted when preparing the
adapter package. For details, see "Prepare the Adapter Package" on page 107.

This task includes the following steps:

l "Configure the orm.xml File" below

l "Configure the reconciliation_rules.txt File " on page 119

Configure the orm.xml File

In this step, youmap the CITs and relationships in the CMDB to the tables in the RDBMS.

1. Open the orm.xml file in a text editor.

This file, by default, contains a template that you use tomap as many CITs and relationships as
needed.

Note: Do not edit the orm.xml file in any version of Notepad fromMicrosoft Corporation. Use
Notepad++, UltraEdit, or some other third-party text editor.

2. Make changes to the file according to the data entities to bemapped. For details, see the following
examples.

The following types of relationships may bemapped in the orm.xml file:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 115 of 503

o One to one:

The code for this type of relationship is:

<one-to-one name="end1" target-entity="node">
 <join-column name="Device_ID" >
</one-to-one>
<one-to-one name="end2" target-entity="sw_sub_component">
 <join-column name="Device_ID" >
 <join-column name="Version_ID" >
</one-to-one>

o Many to one:

The code for this type of relationship is:

<many-to-one name="end1" target-entity="node">
 <join-column name="Device_ID" >
</many-to-one>
<one-to-one name="end2" target-entity="sw_sub_component">
 <join-column name="Device_ID" >
 <join-column name="Version_ID" >
</one-to-one>

o Many tomany:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 116 of 503

The code for this type of relationship is:

<many-to-one name="end1" target-entity="node">
 <join-column name="Device_ID" >
</many-to-one>
<many-to-one name="end2" target-entity="sw_sub_component">
 <join-column name="Device_ID" >
 <join-column name="Version_ID" >
</many-to-one>

For details about naming conventions, see "Naming Conventions" on page 142.

Example of Entity Mapping Between the Data Model and the RDBMS:

Note: Attributes that do not have to be configured are omitted from the following
examples.

o The class of the CMDB CIT:

<entity class="generic_db_adapter.node">

o The name of the table in the RDBMS:

<table name="Device" />

o The column name of the unique identifier in the RDBMS table:

<column name="Device ID" />

o The name of the attribute in the CMDB CIT:

<basic name="name">

o The name of the table field in the external data source:

<column name="Device_Name" />

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 117 of 503

o The name of the new CIT you created in "Create a CI Type" on page 105:

<entity class="generic_db_adapter.MyAdapter">

o The name of the corresponding table in the RDBMS:

<table name="SW_License" />

o The unique identity in the RDBMS:

o The attribute name in the CMDB CIT and the name of the corresponding attribute in
the RDBMS:

Example of Relationship Mapping Between the Data Model and the RDBMS:

o The class of the CMDB relationship:

<entity class="generic_db_adapter.node_containment_MyAdapter">

o The name of the RDBMS table where the relationship is performed:

<table name="MyAdapter" />

o The unique ID in the RDBMS:

<id name="id1">
 <column updatable="false" insertable="false"
name="Device_ID">
 <generated-value strategy="TABLE" />
</id>
<id name="id2">
 <column updatable="false" insertable="false"
name="Version_ID">
 <generated-value strategy="TABLE" />
</id>

o The relationship type and the CMDB CIT:

<many-to-one target-entity="node" name="end1">

o The primary key and foreign key fields in the RDBMS:

<join-column updatable="false" insertable="false"
referenced-column-name="[column_name]" name="Device_ID" />

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 118 of 503

Configure the reconciliation_rules.txt File

In this step you define the rules by which the adapter reconciles the CMDB and the RDBMS (only if
Mapping Engine is used, for backward compatibility with version 8.x):

1. Open META-INF\reconciliation_rules.txt in a text editor.

2. Make changes to the file according to the CIT you aremapping. For example, to map a node CIT,
use the following expression:

multinode[node] ordered expression[^name]

Note:

o If the data in the database is case sensitive, do not delete the control character (^).

o Check that each opening square bracket has amatching closing bracket.

For details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page 151.

Implement a Plug-in
This task describes how to implement and deploy aGeneric DB Adapter with plug-ins.

Note: Before writing a plug-in for an adapter, make sure you have completed all the necessary
steps in "Prepare the Adapter Package" on page 107.

1. Option 1 –Write a Java based plug-in

a. Copy the following jar files from the UCMDB server installation directory to your development
class path:

l Copy the db-interfaces.jar file and db-interfaces-javadoc.jar file from the tools\adapter-
dev-kit\db-adapter-framework folder.

l Copy the federation-api.jar file and federation-api-javadoc.jar file from the
\tools\adapter-dev-kit\SampleAdapters\production-lib folder.

Note: More information about developing a plug-in can be found in the db-interfaces-
javadoc.jar and federation-api-javadoc.jar files and in the online documentation at:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 119 of 503

l C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\DBAdapterFramework_JavaAPI\index.html

l C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\Federation_JavaAPI\index.html

b. Write a Java class implementing the plug-in's Java interface. The interfaces are defined in the
db-interfaces.jar file. The table below specifies the interface that must be implemented for
each plug-in:

Plug-in Type Interface Name Method

Synchronize Full
Topology

FcmdbPluginForSyncGetFullTopology getFullTopology

Synchronize
Changes

FcmdbPluginForSyncGetChangesTopology getChangesTopology

Synchronize
Layout

FcmdbPluginForSyncGetLayout getLayout

Retrieve
Supported
Queries

FcmdbPluginForSyncGetSupportedQueries getSupportedQueries

Alter TQL query
definition and
results

FcmdbPluginGetTopologyCmdbFormat getTopologyCmdbFormat

Alter layout
request for CIs

FcmdbPluginGetCIsLayout getCisLayout

Alter layout
request for links

FcmdbPluginGetRelationsLayout getRelationsLayout

Push Back IDs FcmdbPluginPushBackIds getPushBackIdsSQL

The plug-in's class must have a public default constructor. Also, all of the interfaces expose a
method called initPlugin. This method is guaranteed to be called before any other method and
is used to initialize the adapter with the containing adapter's environment object.

If FcmdbPluginForSyncGetChangesTopology is implemented, there are two different
ways to report the changes:

l Report the entire root topology at all times. According to this topology, the auto-delete
function finds which CIs should be removed. In this case, the auto-delete function should
be enabled by using the following:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 120 of 503

<autoDeleteCITs isEnabled="true">
<CIT>link</CIT>
<CIT>object</CIT>

</autoDeleteCITs>

l Report each CI instance that was removed/updated. In this case the auto-delete
mechanism should be disabled by using the following:

<autoDeleteCITs isEnabled="false">
<CIT>link</CIT>
<CIT>object</CIT>

</autoDeleteCITs>

c. Make sure you have the Federation SDK JAR and theGeneric DB Adapter JARs in your class
path before compiling your Java code. The Federation SDK is the federation_api.jar file,
which can be found in theC:\hp\UCMDB\UCMDBServer\lib directory.

d. Pack your class into a jar file and put it under the adapterCode\<Your Adapter Name> folder in
the adapter package, prior to deploying it.

2. Option 2 –Write a Groovy based plug-in

a. Create aGroovy code file (MyPlugin.groovy) in the Adapter Management Menu, under the
adapter package configuration files.

b. In the Groovy class, implement the appropriate interfaces. The interfaces are defined in the
db-interfaces.jar file, see the table above.

3. The plug-ins are configured using the plugins.txt file, located in the \META-INF folder of the
adapter.

The following is an example of the file from the DDMi adapter:

mandatory plugin to sync full topology
[getFullTopology]
com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin
mandatory plugin to sync changes in topology
[getChangesTopology]
com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin
mandatory plugin to sync layout
[getLayout]
com.hp.ucmdb.adapters.ed.plugins.replication.EDReplicationPlugin
plugin to get supported queries in sync. If not defined return all tqls
names
[getSupportedQueries]
internal not mandatory plugin to change tql definition and tql result
[getTopologyCmdbFormat]

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 121 of 503

internal not mandatory plugin to change layout request and CIs result
[getCisLayout]
internal not mandatory plugin to change layout request and relations
result
[getRelationsLayout]
internal not mandatory plugin to change action on pushBackIds
[pushBackIds]

Legend:

- A comment line.

[<Adapter Type>] – Start of the definition section for a specific adapter type.

There can be an empty line under each [<Adapter Type>], meaning that there is no plug-in class
associated, or the fully qualified name of your plug-in class can be listed.

4. Pack your adapter with the new jar file and the updated plugins.xml file. The remainder of the files
in the package should be the same as in any adapter based on theGeneric DB adapter.

Deploy the Adapter

1. In UCMDB, access the PackageManager. For details, see "PackageManager Page" in the
Universal CMDB Administration Guide.

2. Click theDeploy Packages to Server (from local disk) icon and browse to your adapter

package. Select the package and click Open, then click Deploy to display the package in the
PackageManager.

3. Select your package in the list and click theView package resources icon to verify that the

package contents are recognized by PackageManager.

Edit the Adapter
Once you have created and deployed the adapter, you can then edit it within UCMDB. For details, see
"Adapter Management" in theUniversal CMDB Data Flow Management Guide.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 122 of 503

Create an Integration Point
In this step you check that the federation is working. That is, that the connection is valid and that the
XML file is valid. However, this check does not verify that the XML is mapping to the correct fields in
the RDBMS.

1. In UCMDB, access the Integration Studio (Data Flow Management > Integration Studio).

2. Create an integration point. For details, see New Integration Point/Edit Integration Point Dialog
Box in theUniversal CMDB Data Flow Management Guide.

The Federation tab displays all CITs that can be federated using this integration point. For details,
see Federation Tab in theUniversal CMDB Data Flow Management Guide.

Create a View
In this step you create a view that enables you to view instances of the CIT.

1. In UCMDB, access theModeling Studio (Modeling > Modeling Studio).

2. Create a view. For details, see How to Create a Pattern View in theUniversal CMDB Modeling
Guide.

Calculate the Results
In this step you check the results.

1. In UCMDB, access theModeling Studio (Modeling > Modeling Studio).

2. Open a view.

3. Calculate results by clicking theCalculate Query Result Count button.

4. Click thePreview button to view the CIs in the view.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 123 of 503

View the Results
In this step you view the results and debug problems in the procedure. For example, if nothing is shown
in the view, check the definitions in the orm.xml file; remove the relationship attributes and reload the
adapter.

1. In UCMDB, access the IT UniverseManager (Modeling > IT Universe Manager).

2. Select a CI. The Properties tab displays the results of the federation.

View Reports
In this step you view Topology reports. For details, see Topology Reports Overview in theUniversal
CMDB Modeling Guide.

Enable Log Files
To understand the calculation flows, adapter lifecycle, and to view debug information, you can consult
the log files. For details, see "Adapter Log Files" on page 174.

Use Eclipse to Map Between CIT Attributes and

Database Tables

Caution: This procedure is intended for users with an advanced knowledge of content
development. For any questions, contact Micro Focus Software Support.

This task describes how to install and use the JPA plug-in, provided with the J2EE edition of Eclipse,
to:

l Enable graphical mapping between CMDB class attributes and database table columns.

l Enablemanual editing of themapping file (orm.xml), while providing correctness. The correctness

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 124 of 503

check includes a syntax check as well as verification that the class attributes andmapped
database table columns are stated correctly.

l Enable deployment of themapping file to the CMDB server and to view the errors, as a further
correctness check.

l Define a sample query on the CMDB server and run it directly from Eclipse, to test themapping file.

Version 1.1 of the plug-in is compatible with UCMDB version 9.01 or later and Eclipse IDE for Java EE
Developers, version 1.2.2.20100217-2310 or later.

This task includes the following steps:

l "Prerequisites" on the next page

l "Installation" on the next page

l "Prepare theWork Environment" on the next page

l "Create an Adapter" on page 127

l "Configure the CMDB Plug-in" on page 127

l "Import the UCMDB Class Model" on page 127

l "Build the ORM File –MapUCMDB Classes to Database Tables" on page 128

l "Map IDs" on page 128

l "Map Attributes" on page 128

l "Map a Valid Link" on page 129

l "Build the ORM File – Use Secondary Tables" on page 130

l "Define a Secondary Table" on page 130

l "Map an Attribute to a Secondary Table" on page 130

l "Use an Existing ORM File as a Base" on page 130

l "Importing an Existing ORM File from an Adapter" on page 131

l "Check the Correctness of the orm.xml File – Built-in Correctness Check" on page 131

l "Create a New Integration Point" on page 131

l "Deploy the ORM File to the CMDB" on page 131

l "Run a Sample TQLQuery" on page 132

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 125 of 503

1. Prerequisites

Install the latest supported Java Runtime Environment (JRE) on themachine where you will run
Eclipse from the following site:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

2. Installation

a. Download and extract Eclipse IDE for Java EE Developers from
http://www.eclipse.org/downloads to a local folder, for example, C:\Program Files\eclipse.

b. Copy com.hp.plugin.import_cmdb_model_1.0.jar from
C:\hp\UCMDB\UCMDBServer\tools\db-adapter-eclipse-plugin\bin to
C:\Program Files\Eclipse\plugins.

c. LaunchC:\Program Files\Eclipse\eclipse.exe. If a message is displayed that the Java
virtual machine is not found, launch eclipse.exewith the following command line:

"C:\Program Files\eclipse\eclipse.exe" -vm "<JRE installation folder>\bin"

3. Prepare the Work Environment

In this step, you set up the workspace, database, connections, and driver properties.

a. Extract the fileworkspaces_gdb.zip from C:\hp\UCMDB\
UCMDBServer\tools\db-adapter-eclipse-plugin\workspace intoC:\Documents and
Settings\All Users.

Note: Youmust use the exact folder path. If you unzip the file to the wrong path or leave
the file unzipped, the procedure will not work.

b. In Eclipse, choose File > Switch Workspace > Other:

If you are working with:

l SQLServer, select the following folder: C:\Documents and Settings\All
Users\workspace_gdb_sqlserver.

l MySQL, select the following folder: C:\Documents and Settings\All Users\workspace_
gdb_mysql.

l Oracle, select the following folder: C:\Documents and Settings\All Users\workspace_
gdb_oracle.

c. Click OK.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 126 of 503

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads

d. In Eclipse, display the Project Explorer view and select <Active project> > JPA Content >
persistence.xml > <active project name> > orm.xml.

e. In the Data Source Explorer view (the bottom left pane), right-click the database connection
and select thePropertiesmenu.

f. In theProperties for <Connection name> dialog box, select Common and select the
Connect every time the workbench is started check box. Select Driver Properties and fill
in the connection properties. Click Test Connection and verify that the connection is
working. Click OK.

g. In the Data Source Explorer view, right-click the database connection and click Connect. A
tree containing the database schemas and tables is displayed under the database connection
icon.

4. Create an Adapter

Create an adapter using the guidelines in "Step 1: Create an Adapter" on page 35.

5. Configure the CMDB Plug-in

a. In Eclipse, click UCMDB > Settings to open theCMDB Settings dialog box.

b. If not already selected, select the newly created JPA project as the Active project.

c. Enter the CMDB host name, for example, localhost or labm1.itdep1. There is no need to
include the port number or http:// prefix in the address.

d. Fill in the user name and password for accessing the CMDB API, usually admin/admin.

e. Make sure that theC:\hp folder on the CMDB server is mapped as a network drive.

f. Select the base folder of the relevant adapter underC:\hp. The base folder is the one that
contains the dbAdapter.jar file and theMETA-INF subfolder. Its path should be
C:\hp\UCMDB\UCMDBServer\runtime\fcmdb\CodeBase\<adapter name>. Verify that
there is no backslash (\) at the end.

6. Import the UCMDB Class Model

In this step, you select the CITs to bemapped as JPA entities.

a. Click UCMDB > Import CMDB Class Model to open theCI Types Selection dialog box.

b. Select the CI types that you intend tomap as JPA entities. Click OK. The CI types are
imported as Java classes. Verify that they appear under the src folder of the active project.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 127 of 503

7. Build the ORM File – Map UCMDB Classes to Database Tables

In this step, youmap the Java classes (that you imported in the previous step) to the database
tables.

a. Make sure the DB connection is connected. Right-click the active project (calledmyProject
by default) in Project Explorer. Select the JPA view, select theOverride default schema
from connection check box, and select the relevant database schema. Click OK.

b. Map a CIT: In the JPA Structure view, right-click theEntity Mappings branch and select Add
Class. TheAdd Persistent Class dialog box opens. Do not change theMap as field (Entity).

c. Click Browse and select the UCMDB class to bemapped (all UCMDB classes belong to the
generic_db_adapter package).

d. Click OK in both dialog boxes. The selected class is displayed under theEntity Mappings
branch in the JPA Structure view.

Note: If the entity appears without an attribute tree, right-click the active project in the
Project Explorer view. ChooseClose and thenOpen.

e. In the JPA Details view, select the primary database table to which the UCMDB class should
bemapped. Leave all other fields unchanged.

8. Map IDs

According to JPA standards, each persistent class must have at least one ID attribute. For
UCMDB classes, you canmap up to three attributes as IDs. Potential ID attributes are called id1,
id2, and id3.

Tomap an ID attribute:

a. Expand the corresponding class under theEntity Mappings branch in the JPA Structure
view, right-click the relevant attribute (for example, id1), and select Add Attribute to XML
and Map....

b. TheAdd Persistent Attribute dialog box opens. Select Id in theMap as field and click OK.

c. In the JPA Details view, select the database table column to which the ID field should be
mapped.

9. Map Attributes

In this step, youmap attributes to the database columns.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 128 of 503

a. Expand the corresponding class under theEntity Mappings branch in the JPA Structure
view, right-click the relevant attribute (for example, host_hostname), and select Add
Attribute to XML and Map....

b. TheAdd Persistent Attribute dialog box opens. Select Basic in theMap as field and click
OK.

c. In the JPA Details view, select the database table column to which the attribute field should
bemapped.

10. Map a Valid Link

Perform the steps described above in the step "Build the ORM File –MapUCMDB Classes to
Database Tables" on the previous page for mapping a UCMDB class denoting a valid link. The
name of each such class takes the following structure: <end1 entity name>_<link name>_
<end 2 entity name>. For example, aContains link between a host and a location is denoted by
a Java class whose name is generic_db_adapter.host_contains_location. For details, see
"The reconciliation_rules.txt File (for backwards compatibility)" on page 151.

a. Map the ID attributes of the link class as described in "Map IDs" on the previous page. For
each ID attribute, expand theDetails check box group in the JPA Details view and clear the
Insertable andUpdateable check boxes.

b. Map the end1 and end2 attributes of the link class as follows: For each of the end1 and end2
attributes of the link class:

l Expand the corresponding class under theEntity Mappings branch in the JPA Structure
view, right-click the relevant attribute (for example, end1), and select Add Attribute to
XML and Map....

l In theAdd Persistent Attribute dialog box, selectMany to One orOne to One in the
Map as field.

l SelectMany to One if the specified end1 or end2CI can havemultiple links of this type.
Otherwise, select One to One. For example, for a host_contains_ip link the host end
should bemapped as Many to One, since one host can havemultiple IPs, and the ip end
should bemapped as One to One, since one IP can have only a single host.

l In the JPA Details view, select Target entity, for example, generic_db_adapter.host.

l In the Join Columns section of the JPA Details view, check Override Default. Click
Edit. In theEdit Join Column dialog box, select the foreign key column of the link
database table that points to an entry in the end1/end2 target entity's table. If the
referenced column name in the end1/end2 target entity's table is mapped to its ID
attribute, leave theReferenced Column Name unchanged. Otherwise, select the name

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 129 of 503

of the column to which the foreign key column points. Clear the Insertable andUpdatable
check boxes and click OK.

l If the end1/end2 target entity has more than one ID, click theAdd button to add additional
join columns andmap them in the sameway as described in the previous step.

11. Build the ORM File – Use Secondary Tables

JPA enables a Java class to bemapped tomore than one database table. For example, Host can
bemapped to theDevice table to enable persistence of most of its attributes and to the
NetworkNames table to enable persistence of host_hostName. In this case, Device is the
primary table andNetworkNames is the secondary table. Any number of secondary tables can be
defined. The only condition is that theremust be a one-to-one relationship between the entries of
the primary and secondary tables.

12. Define a Secondary Table

Select the appropriate class in the JPA Structure view. In the JPA Details view, access the
Secondary Tables section and click Add. In theAdd Secondary Table dialog box, select the
appropriate secondary table. Leave the other fields unchanged.

If the primary and the secondary table do not have the same primary keys, configure the join
columns in thePrimary Key Join Columns section of the JPA Details view.

13. Map an Attribute to a Secondary Table

Youmap a class attribute to a field of a secondary table as follows:

a. Map the attribute as described above in "Map Attributes" on page 128.

b. In theColumn section of the JPA Details view, select the secondary table name in the Table
field, to replace the default value.

14. Use an Existing ORM File as a Base

To use an existing orm.xml file as a basis for the one you are developing, perform the following
steps:

a. Verify that all CITs mapped in the existing orm.xml file are imported into the active Eclipse
project.

b. Select and copy all or part of the entity mappings from the existing file.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 130 of 503

c. Select theSource tab of the orm.xml file in the Eclipse JPA perspective.

d. Paste all copied entity mappings under the <entity-mappings> tag of the edited orm.xml file,
beneath the <schema> tag. Make sure that the schema tag is configured as described above
in the step "Build the ORM File –MapUCMDB Classes to Database Tables" on page 128. All
pasted entities now appear in the JPA Structure view. From now on, mappings can be edited
both graphically andmanually through the xml code of the orm.xml file.

e. Click Save.

15. Importing an Existing ORM File from an Adapter

If an adapter already exists, the Eclipse Plug-in can be used to edit its ORM file graphically. Import
the orm.xml file into Eclipse, edit it using the plug-in and then deploy it back to the UCMDB
machine. To import the ORM file, press the button on the Eclipse toolbar. A confirmation dialog is
displayed. Click OK. TheORM file is copied from the UCMDB machine to the active Eclipse
project and all relevant classes are imported from the UCMDB class model.

If the relevant classes do not appear in the JPA Structure view, right-click the active project in the
Project Explorer view, chooseClose and thenOpen.

From now on, the ORM file can be edited graphically using Eclipse, and then deployed back to the
UCMDB machine as described below in "Deploy the ORM File to the CMDB" below.

16. Check the Correctness of the orm.xml File – Built-in Correctness Check

The Eclipse JPA plug-in checks if any errors are present andmarks them in the orm.xml file. Both
syntax (for example, wrong tag name, unclosed tag, missing ID) andmapping errors (for example,
wrong attribute name or database table field name) are checked. If there are errors, their
description appears in theProblems view.

17. Create a New Integration Point

If no integration point exists in the CMDB for this adapter, you can create it in the Integration
Studio. For details, see Integration Studio in theUniversal CMDB Data Flow Management Guide.

Fill in the integration point name in the dialog box that opens. The orm.xml file is copied to the
adapter folder. An integration point is created with all the imported CI types as its supported
classes, except for multinode CITs, if they are configured in the reconciliation_rules.txt file. For
details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page 151.

18. Deploy the ORM File to the CMDB

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 131 of 503

Save the orm.xml file and deploy it to the UCMDB server by clickingUCMDB > Deploy ORM.
The orm.xml file is copied to the adapter folder and the adapter is reloaded. The operation result is
shown in anOperation Result dialog box. If any error occurs during the reload process, the Java
exception stack trace is displayed in the dialog box. If no integration point has yet been defined
using the adapter, nomapping errors are detected upon deployment.

19. Run a Sample TQL Query

a. Define a query (not a view) in theModeling Studio. For details, seeModeling Studio in the
Universal CMDB Modeling Guide.

b. Create an integration point using the adapter that you created in the step "Create a New
Integration Point" on the previous page. For details, see New Integration Point/Edit Integration
Point Dialog Box in theUniversal CMDB Data Flow Management Guide.

c. During the creation of the adapter, verify that the CI types that should participate in the query
are supported by this integration point.

d. When configuring the CMDB plug-in, use this sample query name in the Settings dialog box.
For details, see the step above "Configure the CMDB Plug-in" on page 127.

e. Click theRun TWL button to run a sample TQL and verify whether it returns the required
results using the newly created orm.xml file.

Adapter Configuration Files
The files discussed in this section are located in the db-adapter.zip package in the
C:\hp\UCMDB\UCMDBServer\content\adapters folder.

This section describes the following configuration files:

l "The adapter.conf File" on page 134

l "The simplifiedConfiguration.xml File" on page 135

l "The orm.xml File" on page 138

l "The reconciliation_types.txt File" on page 151

l "The reconciliation_rules.txt File (for backwards compatibility)" on page 151

l "The transformations.txt File" on page 153

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 132 of 503

l "The discriminator.properties File" on page 154

l "The replication_config.txt File" on page 155

l "The fixed_values.txt File" on page 156

l "The Persistence.xml File" on page 156

General Configuration

l adapter.conf. The adapter configuration file. For details, see "The adapter.conf File" on the next
page.

Simple Configuration

l simplifiedConfiguration.xml. Configuration file that replaces orm.xml, transformations.txt, and
reconciliation_rules.txtwith less capabilities. For details, see "The simplifiedConfiguration.xml
File" on page 135.

Advanced Configuration

l orm.xml. The object-relational mapping file in which youmap between CMDB CITs and database
tables. For details, see "The orm.xml File" on page 138.

l reconciliation_rules.txt. Contains the reconciliation rules. For details, see "The reconciliation_
rules.txt File (for backwards compatibility)" on page 151.

l transformations.txt. Transformations file in which you specify the converters to apply to convert
from the CMDB value to the database value, and vice versa. For details, see "The
transformations.txt File" on page 153.

l Discriminator.properties. This file maps each supported CI type to a comma-separated list of
possible corresponding values. For details, see "The discriminator.properties File" on page 154.

l Replication_config.txt. This file contains a comma-separated list of CI and relationship types
whose property conditions are supported by the replication plug-in. For details, see "The replication_
config.txt File" on page 155.

l Fixed_values.txt. This file enables you to configure fixed values for specific attributes of certain
CITs. For details, see "The fixed_values.txt File" on page 156.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 133 of 503

Hibernate Configuration

l persistence.xml. Used to override out-of-the-box Hibernate configurations. For details, see "The
Persistence.xml File" on page 156.

Enabling Temporary Table Support for the Adapter

Enabling temporary tables allows the adapter to work more efficiently with the remote database, thus
reducing stress on the database and network and also enhancing performance.

To enable temporary table support in General Database Adapter, the following conditions must bemet:

l The credentials given to connect to the database, include permission to create, modify, and delete
temporary tables.

l Configure the following settings in the adapter.conf configuration file:

temp.tables.enabled=true

performance.enable.single.sql=true

Note: Temporary tables are only supported for Microsoft SQL andOracle.

The adapter.conf File

This file contains the following settings:

l use.simplified.xml.config=false.true: uses simplifiedConfiguration.xml.

Note: Using this file means that orm.xml, transformations.txt, and reconciliation_
rules.txt are replaced with fewer capabilities.

l dal.ids.chunk.size=300. Do not change this value.

l dal.use.persistence.xml=false. true: the adapter reads the Hibernate configuration from
persistence.xml.

Note: It is not recommended to override the Hibernate configuration.

l performance.memory.id.filtering=true. When theGDBA executes TQLS, in some cases a large
number of IDs may be retrieved and sent back to the database using SQL. To avoid this excessive

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 134 of 503

work and improve performance, the GDBA attempts to read the entire view/table and filters the
results in-memory.

l id.reconciliation.cmdb.id.type=string/bytes. Whenmapping the Generic DB adapter using ID
Reconciliation, you can either map the cmdb_id to a string or bytes/raw column type by changing
theMETA-INF/ adapter.conf property.

l performance.enable.single.sql=true. This is an optional parameter. If it does not appear in the
file, its default value is true. When true, the Generic Database Adapter tries to generate a single
SQL statement for each query being executed (either for population or a federated query). Using a
single SQL statement improves the performance andmemory consumption of the Generic
Database Adapter. When false, the Generic Database Adapter generates multiple SQL statements,
whichmay take longer and consumemorememory than a single one. Even when this attribute is
set to true, the adapter does not generate a single SQL statement in the following scenarios:

o The database the adapter connects to is not on anOracle or SQL Server.

o The TQL being executed contains a cardinality condition other than 0..* and 1..* (for example, if
there is a cardinality condition like 2..* or 0..2).

l in.expression.size.limit=950 (default). This parameter splits the 'IN' expression of the executed
SQL, when the size limit of the list of arguments is reached.

l stringlist.delimiter.of.<CIT Name>.<Attribute Name>=<delimiter>. In order to map a string list
attribute to a database column in the generic database adapter, the attribute needs to bemapped to
a string column that contains a list of concatenated values. For example, to map the attribute
policy_categorywith the CI Type policy, and the string column contains a list of values:
value1##value2##value3 (that define a list of 3 values value1, value2, value3), use the setting:
stringlist.delimiter.of.policy.policy_category=##.

l temp.tables.enabled=true. Enables using temporary tables to improve performance. Only
available when performance.enable.single.sql is enabled (only supported in Microsoft SQL and
Oracle). Certain permissions in the database server may be required.

l temp.tables.min.value=50. Defines the number of condition values (or IDs) that are needed to use
temporary tables.

The simplifiedConfiguration.xml File

This file is used for simplemapping of UCMDB classes to database tables. To access the template for
editing the file, go toAdapter Management > db-adapter > Configuration files.

This section includes the following topics:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 135 of 503

l "The simplifiedConfiguration.xml File Template" below

l "Limitations" on the next page

The simplifiedConfiguration.xml File Template

l TheCMDB-class-name property is themultinode type (the node to which federated CITs connect
in the TQL):

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
 <CMDB-class CMDB-class-name="node" default-table-name="[table_name]">
 <primary-key column-name="[column_name]"/>

l reconciliation-by-two-nodes. Reconciliation can be done using one node or two nodes. In this
case example, reconciliation uses two nodes.

l connected-node-CMDB-class-name. The second class type needed in the reconciliation TQL.

l CMDB-link-type. The relationship type needed in the reconciliation TQL.

l link-direction. The direction of the relationship in the reconciliation TQL (from node to ip_address
or from ip_address to node):

<reconciliation-by-two-nodes connected-node-CMDB-class-name="ip_address" CMDB-
link-type="containment" link-direction="main-to-connected">

The reconciliation expression is in the form of ORs and eachOR includes ANDs.

l is-ordered. Determines if reconciliation is done in order form or by a regular OR comparison.

<or is-ordered="true">

If the reconciliation property is retrieved from themain class (themultinode), use the attribute tag,
otherwise use the connected-node-attribute tag.

l ignore-case.true: when data in the UCMDB class model is compared with data in the RDBMS,
case does not matter:

<attribute CMDB-attribute-name="name" column-name="[column_name]" ignore-
case="true" />

The column name is the name of the foreign key column (the columnwith values that point to the
multinode primary key column).

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 136 of 503

If themultinode primary key column is composed of several columns, there needs to be several
foreign key columns, one for each primary key column.

<foreign-primary-key column-name="[column_name]" CMDB-class-primary-key-column="
[column_name]" />

If there are few primary key columns, duplicate this column.

<primary-key column-name="[column_name]"/>

l The from-CMDB-converter and to-CMDB-converter properties are Java classes that implement
the following interfaces:

o com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.
FcmdbDalTransformerFromExternalDB

o com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.
FcmdbDalTransformerToExternalDB

Use these converters if the value in the CMDB and in the database are not the same.

In this example, GenericEnumTransformer is used to convert the enumerator according to the XML
file that is written inside the parenthesis (generic-enum-transformer-example.xml):

<attribute CMDB-attribute-name="[CMDB_attribute_name]" column-name="[column_
name]" from-CMDB-converter="com.mercury.topaz.fcmdb.
adapters.dbAdapter.dal.transform.impl. GenericEnumTransformer
(generic-enum-transformer-example.xml)" to-CMDB-onverter="com.
mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer(generic-enum-transformer-example.xml)" />

<attribute CMDB-attribute-name="[CMDB_attribute_name]" column-name="[column_
name]" />

<attribute CMDB-attribute-name="[CMDB_attribute_name]" column-name="[column_
name]" />

</class>

</generic-DB-adapter-config>

Limitations

l Can be used tomap only TQL queries containing one node (in the database source). For example,
you can run a node > ticket and a ticket TQL query. To bring the hierarchy of nodes from the

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 137 of 503

database, youmust use the advanced orm.xml file.

l Only one-to-many relations are supported. For example, you can bring one or more tickets on each
node. You cannot bring tickets that belong tomore than one node.

l You cannot connect the same class to different types of CMDB CITs. For example, if you define
that ticket is connected to node, it cannot be connected to application as well.

The orm.xml File

This file is used for mapping CMDB CITs to database tables.

A template to use for creating a new file is located in the
C:\hp\UCMDB\UCMDBServer\runtime\fcmdb\CodeBase\GenericDBAdapter\META-INF
directory.

To edit the XML file for a deployed adapter, navigate toAdapter Management > db-adapter >
Configuration files.

This section includes the following topics:

l "The orm.xml File Template" below

l "Multiple ORM files" on page 142

l "Naming Conventions" on page 142

l "Using Inline SQL Statements Instead of Table Names" on page 142

l "The orm.xml Schema" on page 143

l "Example of Creating the orm.xml File" on page 147

l "Configuring a Specific orm.xml for each Remote Product Version" on page 151

The orm.xml File Template

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0"
xsi:schemaLocation=
"http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd">
 <description>Generic DB adapter orm</description>

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 138 of 503

Do not change the package name.

 <package>generic_db_adapter</package>

entity. The CMDB CIT name. This is themultinode entity.

Make sure that class includes a generic_db_adapter. prefix.

 <entity class="generic_db_adapter.node">
 <table name="[table_name]" />

Use a secondary table if the entity is mapped tomore than one table.

 <secondary-table name="" />
 <attributes>

For a single table inheritance with discriminator, use the following code:

 <inheritance strategy="SINGLE_TABLE" />
 <discriminator-value>node</discriminator-value>
 <discriminator-column name="[column_name]" />

Attributes with tag id are the primary key columns. Make sure that the naming convention for these
primary key columns are idX (id1, id2, and so on) whereX is the column index in the primary key.

 <id name="id1">

Change only the column name of the primary key.

 <column updatable="false" insertable="false" name="[column_
name]" />
 <generated-value strategy="TABLE" />
 </id>

basic. Used to declare the CMDB attributes. Make sure to edit only name and column_name
properties.

 <basic name="name">
 <column updatable="false" insertable="false" name="[column_
name]" />
 </basic>

For a single table inheritance with discriminator, map the extending classes as follows:

 <entity name="[cmdb_class_name]" class="generic_db_adapter.nt" name="nt">

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 139 of 503

 <discriminator-value>nt</discriminator-value>
 <attributes>
 </entity>
 <entity class="generic_db_adapter.unix" name="unix">
 <discriminator-value>unix</discriminator-value>
 <attributes>
 </entity>
 <entity name="[CMDB_class_name]" class="generic_db_adapter.[CMDB[cmdb_class_
name]">
 <table name="[default_table_name]" />
 <secondary-table name="" />
 <attributes>
 <id name="id1">
 <column updatable="false" insertable="false" name="[column_
name]" />
 <generated-value strategy="TABLE" />
 </id>
 <id name="id2">
 <column updatable="false" insertable="false" name="[column_
name]" />
 <generated-value strategy="TABLE" />
 </id>
 <id name="id3">
 <column updatable="false" insertable="false" name="[column_
name]" />
 <generated-value strategy="TABLE" />
 </id>

The following example shows a CMDB attribute namewith no prefix:

 <basic name="[CMDB_attribute_name]">
 <column updatable="false" insertable="false" name="[column_
name]" />
 </basic>
 <basic name="[CMDB_attribute_name]">
 <column updatable="false" insertable="false" name="[column_
name]" />
 </basic>
 <basic name="[CMDB_attribute_name]">
 <column updatable="false" insertable="false" name="[column_
name]" />
 </basic>
 </attributes>
 </entity>

This is a relationship entity. The naming convention is end1Type_linkType_end2Type. In this
example end1Type is node and the linkType is composition.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 140 of 503

 <entity name="node_composition_[CMDB_class_name]" class="generic_db_
adapter.node_composition_[CMDB_class_name]">
 <table name="[default_table_name]" />
 <attributes>
 <id name="id1">
 <column updatable="false" insertable="false" name="[column_
name]" />
 <generated-value strategy="TABLE" />
 </id>

The target entity is the entity that this property is pointing to. In this example, end1 is mapped to node
entity.

many-to-one. Many relationships can be connected to one node.

join-column. The column that contains end1 IDs (the target entity IDs).

referenced-column-name. The column name in the target entity (node) that contain the IDs that are
used in the join column.

 <many-to-one target-entity="node" name="end1">
 <join-column updatable="false" insertable="false" referenced-
column-name="[column_name]" name="[column_name]" />
 </many-to-one>

one-to-one. One relationship can be connected to one [CMDB_class_name].

 <one-to-one target-entity="[CMDB_class_name]" name="end2">
 <join-column updatable="false" insertable="false" referenced-
column-name="" name="[column_name]" />
 </one-to-one>
 </attributes>
 </entity>
</entity-mappings>

node attribute. This is an example of how to add a node attribute.

<entity class="generic_db_adapter.host_node">

<discriminator-value>host_node</discriminator-value>

<attributes/>

</entity>

<entity class="generic_db_adapter.nt">

<discriminator-value>nt</discriminator-value>

<attributes>

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 141 of 503

<basic name="nt_servicepack">

<column updatable="false" insertable="false" name="specific_type_value"/>

</basic>

</attributes>

</entity>

Multiple ORM files

Multiple mapping files are supported. Eachmapping file name should end with orm.xml. All mapping
files should be placed under theMETA-INF folder of the adapter.

Naming Conventions

l In each entity, the class property must match the name property with the prefix of generic_db_
adapter.

l Primary key columns must take names of the form idX whereX = 1, 2, ..., according to the number
of primary keys in the table.

l Attribute names must match class attribute names even as regards case.

l The relationship name takes the form end1Type_linkType_end2Type.

l CMDB CITs, which are also reserved words in Java, should be prefixed by gdba_. For example, for
the CMDB CIT goto, the ORM entity should be named gdba_goto.

Using Inline SQL Statements Instead of Table Names

You canmap entities to inline select clauses instead of to database tables. This is equivalent to
defining a view in the database andmapping an entity to this view. For example:

 <entity class="generic_db_adapter.node">
 <table name="(select d.id as id1, d.name as name , d.os as host_os from
Device d)" />

In this example, the node attributes should bemapped to columns id1, name, and host_os, rather than
id, name, and os.

The following limitations apply:

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 142 of 503

l The inline SQL statement is available only when using Hibernate as the JPA provider.

l Round brackets around the inline SQL select clause aremandatory.

l The <schema> element should not be present in the orm.xml file. In the case of Microsoft SQL
Server 2005, this means that all table names should be prefixed with dbo., rather than defining them
globally by <schema>dbo</schema>.

The orm.xml Schema

The following table explains the common elements of the orm.xml file. The complete schema can be
found at http://java.sun.com/xml/ns/persistence/orm_1_0.xsd. The list is not complete, and it mainly
explains the specific behavior of the standard Java Persistence API for the Generic Database Adapter.

Element Name and
Path Description Attributes

entity-mappings The root element for the entity
mapping document. This element
should be exactly the same as the
one given in the GDBA sample
files.

description (entity-
mappings)

A free text description of the
entity mapping document.
(Optional)

package (entity-
mappings)

The name of the Java package
that will contain themapping
classes. Should always contain
the text generic_db_adapter.

1. Name: name
Description: The name of the
UCMDB CI type to which this
entity is mapped. If this is entity is
mapped to a link in the CMDB, the
name of the entity should be in the
format
<end_1>_<link_name>_<end_
2>. For example, node_
composition_cpu defines an
entity that will bemapped to the
composition link between a node
and a CPU. If the name of the CI
type is the same as the name of the
Java class without the package
prefix, this field can be omitted.
Is required?:Optional
Type:String

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 143 of 503

http://java.sun.com/xml/ns/persistence/orm_1_0.xsd

Element Name and
Path Description Attributes

2. Name: class
Description: The fully qualified
name of the Java class that will be
created for this DB entity. The
name of the Java class' package
should be the same as the name
given in the package element.
Youmay not use Java reserved
words, such as interface or switch,
as the class name. Instead, add
the prefix gdba_ to the name (so
interface will be
generic_db_adapter.gdba_
interface.
Is required?:Required
Type:String

table

(entity-
mappings>entity)

This element defines the primary
table of the DB entity. Can only
appear once. Required.

Name: name
Description: The name of the primary
table. If the name of the table does not
contain the schema to which it
belongs, the table will be searched only
in the schema of the user that was
used to create the integration point.
This can also be any valid SELECT
statement. If this is a SELECT
statement, it must be encapsulated
with parentheses.
Is required?:Required
Type:String

secondary-table

(entity-mappings >
entity)

This element may be used to
define a secondary table for the
DB entity. This table must be
connected to the primary table
with a 1-to-1 relationship. You
may definemore than one
secondary table. Optional.

Name: name
Description: The name of the
secondary table. If the name of the
table does not contain the schema to
which it belongs, the table will be
searched only in the schema of the
user that was used to create the
integration point. This can also be any
valid SELECT statement. If this is a
SELECT statement, it must be
encapsulated with parentheses.
Is required?:Required
Type:String

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 144 of 503

Element Name and
Path Description Attributes

primary-key-join-
column

(entity-mappings >
entity >
secondary-table)

If the secondary table and primary
table are not connected using
fields with the same name, this
element defines the name of the
primary key field in the secondary
table that needs to be connected
to the primary key field of the
primary table.

Name: name
Description: The name of the primary
key field in the secondary table. If this
element does not exist, it is assumed
that the primary key field has the same
name as the primary key field of the
primary table.
Is required?:Optional
Type:String

inheritance

(entity-mappings >
entity)

If the current entity is the parent
entity for a family of DB entities,
then use this element to mark it
as such. Optional.

Name: strategy
Description:Defines the way the
inheritance is implemented in your DB.
Is required?:Required
Type:One of the following values:

l SINGLE_TABLE: This entity and
all child entities exist in the same
table.

l JOINED: The child entities are in
joined tables.

l TABLE_PER_CLASS: Each entity
is completely defined by a separate
table.

discriminator-column

(entity-mappings >
entity)

If the inheritance is of type
SINGLE_TABLE, this element is
used to define the name of the
field used to determine the type of
entity for each row.

Name: name
Description: The name of the
discriminator column.
Is required?:Required
Type:String

discriminator-value

(entity-mappings >
entity)

This element defines the type of
the specific entity in the
inheritance tree. This name needs
to be the same as the name
defined in the
discriminator.properties file for
the value group of this specific
entity type.

attributes

(entity-mappings >
entity)

The root element for all of the
attributemappings for an entity.

id This element defines the key field Name: name

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 145 of 503

Element Name and
Path Description Attributes

(entity-mappings >
entity attributes)

for the entity. Theremust be at
least one id field defined. If more
than one id element exists, its
fields create a compound key for
the entity. You should try and
avoid compound keys for CI
entities (not for links).

Description:A string of type idX,
where X is a number between 1 and 9.
The first id should bemarked as id1,
the second as id2 and so on. This is
NOT the name of the key attribute in
UCMDB.
Is required?:Required
Type:String

basic

(entity-mappings >
entity attributes)

This element defines amapping
between a field in the table, which
is not part of the table's primary
key, and a UCMDB attribute.

Name: name
Description: The name of the UCMDB
attribute to which the field is mapped.
This attributemust exist in the
UCMDB CI type to which the current
entity is mapped.
Is required?:Required
Type:String

column

(entity-mappings >
entity > attributes >id

-OR-

(entity-mappings >
entity > attributes >
basic)

Defines the name of the column in
the table for basic mapping or an
id field.

1. Name: name
Description: The name of the field.
Is required?:Required
Type:String

2. Name: table
Description: The name of the table
to which the field belongs. This
must be either the primary table or
one of the secondary tables defined
for the entity. If this attribute is
omitted, it is assumed that the field
belongs to the primary table.
Is required:Optional
Type:String

one-to-one

(entity-mappings >
entity > attributes)

Defines a columnwhose value is
in another table, and the two
tables are connected using a one-
to-one relationship. This element
is only supported for link entity
mappings and not for other CI
types. This is the only way to
define amapping between a table
and a UCMDB link.

1. Name: name
Description:Which of the two
ends this field represents.
Is required?:Required
Type:Either end1 or end2

2. Name: target-entity
Description: The name of the
entity to which the end refers.
Is required?:Required
Type:One of the entity names
defined in the entity mapping
document.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 146 of 503

Element Name and
Path Description Attributes

join-column

(entity-mappings >
entity attributes > one-
to-one)

Defines the way to join the target-
entity defined in the parent one-to-
one element and the current
entity.

1. Name: name
Description: The name of the field
in the current table that will be used
to perform the one-to-one join.
Is required?:Required
Type:String

2. Name: name
Description: The name of a field in
the joint entity by which to perform
the join. If this attribute is omitted,
it is assumes that the joint table
has a columnwith the same name
as the field defined in the name
attribute.
Is required?:Optional
Type:String

Example of Creating the orm.xml File

The example presented here demonstrates how to create the orm.xml file. In this example, SQL
tables in a remote database aremapped to CI types in UCMDB.

Given tables with the following format in the remote database, populate theHosts table with nodes, the
IP_Addresses table with IP Addresses, and create links between the nodes and IP Addresses as
follows:

Hosts Table

host_name host_id

Test1 1

Test2 2

Test3 3

IP_Addresses Table

ip_address ip_id

10.1.1.1 1

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 147 of 503

ip_address ip_id

10.2.2.2 2

10.3.3.2 3

10.4.4.4 4

Host_IP_Link Table (links between Nodes and IP Addresses)

host_id ip_id

1 1

2 2

2 3

3 4

The primary key for theHosts table is the host_id field and the primary key in the IP_Addresses
Table table is the ip_id field. In theHost_IP_Link table the host_id and the ip_id are foreign keys
from theHosts Table and IP_Addresses Table.

According to the tables above, create the orm.xml file according to the following steps. The entities
used in this example are node, ip_address, and node_containment_ip_address

1. Create the node entity by mapping the host_id from theHosts table as follows:

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
/orm_1_0.xsd">

<description>test_integration</description>

<package>generic_db_adapter</package>

<entity class="generic_db_adapter.node">

<table name="Hosts"/>

<attributes>

<id name="id1">

<column updatable="false" insertable="false" name=
"host_id"/>

<generated-value strategy="TABLE"/>

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 148 of 503

</id>

<basic name="name">

<column updatable="false" insertable="false" name=
"host_name"/>

</basic>

</attributes>

</entity>

The entity classmust be a CI Type that already exists in UCMDB. The table name is the table
within the database that contains both an ID and the Host information. The ID attribute is required
to identify specific hosts and is used later in themapping. In this example, the name attribute of
this entity is populated with the host_name column in the hosts table.

2. For the next entity, map the IP Addresses from the Interfaces table:

<entity name="ip_address" class="generic_db_adapter.ip_address">

<table name="IP_Addresses"/>

<attributes>

<id name="id1">

<column insertable="false" updatable="false" name="ip_id"/>

<generated-value strategy="TABLE"/>

</id>

<basic name="name">

<column updatable="false" insertable="false" name="ip_address"/>

</basic>

</attributes>

</entity>

3. Next the link between the Node and the IP Address must be created by means of themapping
table, and reference the ip_id field (though it could reference both the host_id and ip_id fields if
desired).

<entity name="node_containment_ip_address"

class="generic_db_adapter.node_containment_ip_address">

<table name="Host_IP_Link"/>

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 149 of 503

<attributes>

<id name="id1">

<column updatable="false" insertable="false" name="ip_id"/>

<generated-value strategy="TABLE"/>

</id>

<many-to-one target-entity="node" name="end1">

<join-column name="host_id"/>

</many-to-one>

<one-to-one target-entity="ip_address" name="end2">

<join-column name="ip_id"/>

</one-to-one>

</attributes>

</entity>

The entity name for the container has the format: [end1 CIT]_[link CIT]_[end2 CIT]. So for this
example, since the link CI Type is containment, the entity name for the container is: node_
containment_ip_address and the entity class is generic_db_adapter.node_containment_ip_
address. The ID is required in this block of code, and while this example works with a single ID of
the Interface, both columns could reference id1 and id2. The code for that would be:

<id name=”id1”>

<column updatable=”false” insertable=”false” name=”ip_id”/>

<generated-value strategy=”TABLE”/>

</id>

<id name=”id2”>

<column updatable=”false” insertable=”false” name=”host_id”/>

<generated-value strategy=”TABLE”/>

</id>

The two ends of this link are ‘many-to-one’ and ‘one-to-one’, meaning each IP Address will be
linked to 1 node, but a nodemay be linked tomany IP Addresses. The columns included are from
the Links table and reference the Hosts and Interfaces tables.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 150 of 503

Configuring a Specific orm.xml for each Remote Product Version

It is possible to configure a specific orm.xml file so that the adapter uses a specific orm.xml for a
given remote product version. For example, if the remote data store has two product versions x and y,
for each version there can be a different mapping of entities.

To configure a specific orm.xml file per remote product version:

1. Add a parameter to the adapter.xml file called version and specify possible version values as
valid-values.

2. In the adapter package, under theMETA-INF folder, create a folder calledVersionOrm.

3. In theVersionOrm folder, create an orm.xml file for each specific version. The filename should
contain the version prefix. For example, if the version is called x, the filename should be x_
orm.xml.

Note: The orm.xml file in theMETA-INF folder is loaded for any remote product version,
regardless of whether you create a specific orm.xml file for a remote product version. It can have
entities that aremapped in the samemanner for all versions.

The reconciliation_types.txt File

As of UCMDB 10.00, the reconciliation_types.txt file is no longer relevant. Any CIT can be used for
reconciliation. The federation engine automatically executes themapping.

The reconciliation_rules.txt File (for backwards

compatibility)

This file is used to configure the reconciliation rules if you want to perform reconciliation when the
DBMappingEngine is configured in the adapter. If you do not use the DBMappingEngine, the generic
UCMDB reconciliationmechanism is used and there is no need to configure this file.

Each row in the file represents a rule. For example:

multinode[node] expression[^node.name OR ip_address.name] end1_type[node]
end2_type[ip_address] link_type[containment]

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 151 of 503

Themultinode is filled with themultinode name (the CMDB CIT that is connected to the federated
database CIT in the TQL query).

This expression includes the logic that decides whether twomultinodes are equal (onemultinode in the
CMDB and the other in the database source).

The expression is composed of ORs or ANDs.

The convention regarding attribute names in the expression part is [className].[attributeName].
For example, attributeName in the ip_address class is written ip_address.name.

For an orderedmatch (if the first OR sub-expression returns an answer that themultinodes are not equal,
the secondOR sub-expression is not compared), use ordered expression instead of expression.

To ignore case during a comparison, use the control (^) sign.

The parameters end1_type, end2_type and link_type are used only if the reconciliation TQL query
contains two nodes and not just amultinode. In this case, the reconciliation TQL query is end1_type >
(link_type) > end2_type.

There is no need to add the relevant layout as it is taken from the expression.

Types of Reconciliation Rules

Reconciliation rules take the form of OR and AND conditions. You can define these rules on
several different nodes (for example, node is identified by name from nodeAND/ORname from ip_
address).

The following options find amatch:

l Ordered match. The reconciliation expression is read from left to right. Two OR sub-expressions
are considered equal if they have values and they are equal. Two OR sub-expressions are
considered not equal if both have values and they are not equal. For any other case there is no
decision, and the next OR sub-expression is tested for equality.

name from node OR from ip_address. If both the CMDB and the data source include name and
they are equal, the nodes are considered as equal. If both have name but they are not equal, the
nodes are considered not equal without testing the name of ip_address. If either the CMDB or the
data source is missing name of node, the name of ip_address is checked.

l Regular match. If there is equality in one of the OR sub-expressions, the CMDB and the data
source are considered equal.

name from node OR from ip_address. If there is nomatch on name of node, name of ip_
address is checked for equality.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 152 of 503

For complex reconciliations, where the reconciliation entity is modeled in the class model as several
CITs with relationships (such as node), themapping of a superset node includes all relevant attributes
from all modeled CITs.

Note: As a result, there is a limitation that all reconciliation attributes in the data source should
reside in tables that share the same primary key.

Another limitation states that the reconciliation TQL query should have nomore than two nodes. For
example, the node > ticket TQL query has a node in the CMDB and a ticket in the data source.

To reconcile the results, namemust be retrieved from the node and/or ip_address.

If the name in the CMDB is in the format of *.m.com, a converter can be used from CMDB to the
federated database, and vice versa, to convert these values.

The node_id column in the database ticket table is used to connect between the entities (the defined
association can also bemade in a node table):

Note: The three tables must be part of the federated RDBMS source and not the CMDB database.

The transformations.txt File

This file contains all the converter definitions.

The format is that each line contains a new definition.

The transformations.txt File Template

entity[[CMDB_class_name]] attribute[[CMDB_attribute_name]] to_DB_class

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 153 of 503

[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.
transform.impl.GenericEnumTransformer(generic-enum-transformer-example.xml)]
from_DB_class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer(generic-enum-transformer-example.xml)]

entity. The entity name as it appears in the orm.xml file.

attribute. The attribute name as it appears in the orm.xml file.

to_DB_class. The full, qualified name of a class that implements the interface
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.FcmdbDalTransformerTo
ExternalDB. The elements in the parenthesis are given to this class constructor. Use this converter to
transform CMDB values to database values, for example, to append the suffix of .com to each node
name.

from_DB_class. The full, qualified name of a class that implements the
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.
FcmdbDalTransformerFromExternalDB interface. The elements in the parenthesis are given to this
class constructor. Use this converter to transform database values to CMDB values, for example, to
append the suffix of .com to each node name.

For details, see "Out-of-the-Box Converters" on page 159.

The discriminator.properties File

This file maps each supported CI type (that is also used as a discriminator value in orm.xml) to a
comma-separated list of possible corresponding values of the discriminator column, or a condition to
match possible values of the discriminator column.

If a condition is used, use the syntax: like(condition), where condition is a string that can contain
the following wildcards:

l % (percent sign) - allows you tomatch any string of any length (including a zero length string)

l _ (underscore) - allows you tomatch a single character

For example, like(%unix%)will match unix, linux, unix-aix, and so on. Like conditions may only be
applied to string columns.

You can also have a single discriminator valuemapped to any value that does not belong to another
discriminator by stating 'all-other'.

If the adapter you are creating uses discriminator capabilities, youmust define all the discriminator
values in the discriminator.properties file.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 154 of 503

Example of Discriminator Mapping:

For example, the adapter supports the CI types node, nt, and unix, and the database contains a single
table named t_nodes that contains a column called type. If the type is 10001, the row represents a
node; if the type is 10004, it represents a unix machine, and so on. The discriminator.properties file
might look like this:

node=10001, 10005
nt=10002,10003
unix=2%
mainframe=all-other

The orm.xml file includes the following code:

 <entity class="generic_db_adapter.node" >
 <table name="t_nodes" />
 ...
 <inheritance strategy="SINGLE_TABLE" />
 <discriminator-value>node</discriminator-value>
 <discriminator-column name="type" />
 ...
 </entity>
 <entity class="generic_db_adapter.nt" name="nt">
 <discriminator-value>nt</discriminator-value>
 <attributes>
 </entity>
 <entity class="generic_db_adapter.unix" name="unix">
 <discriminator-value>unix</discriminator-value>
 <attributes>
 </entity>

The discriminator_column attribute is then calculated as follows:

l If type contains 10002 or 10003 for a certain entry, the entry is mapped to the ntCIT.

l If type contains 10001 or 10005 for a certain entry, the entry is mapped to the nodeCIT.

l If type starts with 2 for a certain entry, the entry is mapped to the unixCIT.

l Any other value in the type column is mapped to themainframeCIT.

Note: The nodeCIT is also the parent of nt and unix.

The replication_config.txt File

This file contains a comma-separated list of CI and relationship types whose property conditions are
supported by the replication plug-in. For details, see "Plug-ins" on page 165.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 155 of 503

The fixed_values.txt File

This file enables you to configure fixed values for specific attributes of certain CITs. In this way, each
of these attributes can be assigned a fixed value that is not stored in the database.

The file should contain zero or more entries of the following format:

entity[<entityName>] attribute[<attributeName>] value[<value>]

For example:

entity[ip_address] attribute[ip_domain] value[DefaultDomain]

The file also supports a list of constants. To define a constants list, use the following syntax:

entity[<entityName>] attribute[<attributeName>] value[{<Val1>, <Val2>, <Val3>, ...
}]

The Persistence.xml File

This file is used to override the default Hibernate settings and to add support for database types that are
not out of the box (OOB database types are Oracle Server, Microsoft SQL Server, andMySQL).

If you need to support a new database type, make sure that you supply a connection pool provider (the
default is c3p0) and a JDBC driver for your database (put the *.jar files in the adapter folder).

To see all available Hibernate values that can be changed, check the org.hibernate.cfg.Environment
class (for details, refer to http://www.hibernate.org.)

Example of the persistence.xml File:

<persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">
 <!-- Don't change this value -->
 <persistence-unit name="GenericDBAdapter">
 <properties>
 <!-- Don't change this value -->
 <property name="hibernate.archive.autodetection" value="class,

hbm" />
 <!--The driver class name"/-->
 <property name="hibernate.connection.driver_class" value="com.

mercury.jdbc.MercOracleDriver" />

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 156 of 503

http://www.hibernate.org/

 <!--The connection url"/-->
 <property name="hibernate.connection.url" value="jdbc:mercury:

oracle://artist:1521;sid=cmdb2" />
 <!--DB login credentials"/-->
 <property name="hibernate.connection.username" value="CMDB" />
 <property name="hibernate.connection.password" value="CMDB" />
 <!--connection pool properties"/-->
 <property name="hibernate.c3p0.min_size" value="5" />
 <property name="hibernate.c3p0.max_size" value="20" />
 <property name="hibernate.c3p0.timeout" value="300" />
 <property name="hibernate.c3p0.max_statements" value="50" />
 <property name="hibernate.c3p0.idle_test_period" value="3000" />
 <!--The dialect to use-->
 <property name="hibernate.dialect" value="org.hibernate.dialect.

OracleDialect" />
 </properties>
 </persistence-unit>
</persistence>

Connect to Database Using NT Authentication

It is possible to connect to anMS SQLServer that requires NT authentication. To do so a driver that
can parse domain is needed (that is, jTDS JDBC Driver).

The authentication is done according to the given parameters (domain, username, password), and not
with the current running process NT credentials.

1. In the persistence.xml edit the following properties as follows:

<!--The driver class name"/-->
<property name="hibernate.connection.driver_class"
value="net.sourceforge.jtds.jdbc.Driver"/>
<property name="hibernate.connection.url" value="jdbc:jtds:sqlserver://[host
name]:[port];DatabaseName=[database name];domain=[the domain]"/>
<!--DB login credentials"/-->
<property name="hibernate.connection.username" value="[username]"/>
<property name="hibernate.connection.password" value="[password]"/>

2. Place the JDBC driver file under: <probe installation folder>\lib\.

3. Restart the probe.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 157 of 503

Configure the Persistence.xml File for the SCCM Integration to

Use NTLM Authentication

Note: This section applies to the SCCM integration only.

In order for the SCCM integration to use NTLM authentication, configure the persistence.xml file as
follows:

1. Place the JDBC driver file under: <probe installation folder>\lib\.

For example, you can put the jtds-1.3.1.jar file from http://sourceforge.net/projects/jtds/files/ in
theDataFlowProbe\lib\ folder.

2. Start the server and the probe.

3. In UCMDB, go toData Flow Management > Adapter Management > SCCMAdapter > .

4. In the Resources pane, select the SCCM adapter configuration file in thePackages >
SCCMAdapter > Configuration Files folder.

5. In the adapter.conf file, set dal.use.persistence.xml=true.

6. In the persistence.xml file, add the following:

<persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
"http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">
<persistence-unit name="GenericDBAdapter">

<properties>
<!-- added to fix: org.hibernate.HibernateException:

'hibernate.dialect' must be set when no Connection avalable -->
<property name="hibernate.dialect"

value="org.hibernate.dialect.HSQLDialect"/>
<property name="hibernate.hbm2ddl.auto" value="create-drop"/>

<!--The driver class name"/-->
<property name="hibernate.connection.driver_class"

value="net.sourceforge.jtds.jdbc.Driver"/>
<property name="hibernate.connection.url"

value="jdbc:jtds:sqlserver://<DB_host>:<port>;DatabaseName=<DB_
name>;domain=<domain_name> "/>

</properties>
</persistence-unit>

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 158 of 503

http://sourceforge.net/projects/jtds/files/

</persistence>

Note:Replace the highlighted part with your connection URL.

7. No user or password is required in the persistence.xml file.

8. Go toData Flow Management > Integration Studio, and click theNew Integration Point
button.

9. Provide values for required fields.

When you are required to enter credential ID, do the following:

a. In the Choose Credential dialog box, select Generid DB Protocol (SQL) from the left
Protocol pane.

b. In the right Credentials pane, click theCreate new connection details for selected

protocol type button.

c. In the new dialog box, selectMicrosoftSQLServerNTLM as database type.

d. Enter a port number.

e. Provide a username in the following format: domain\username.

f. Provide a password.

Out-of-the-Box Converters
You can use the following converters (transformers) to convert federated queries and replication jobs to
and from database data.

This section includes the following topics:

l "Out-of-the-Box Converters" above

l "The SuffixTransformer Converter" on page 163

l "The PrefixTransformer Converter" on page 163

l "The BytesToStringTransformer Converter" on page 163

l "The StringDelimitedListTransformer Converter" on page 164

l "The Custom Converter" on page 164

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 159 of 503

The enum-transformer Converter

This converter uses an XML file that is given as an input parameter.

The XML file maps between hard-coded CMDB values and database values (enums). If one of the
values does not exist, you can choose to return the same value, return null, or throw an exception.

The transformer performs a comparison between two strings using a case sensitive, or a case
insensitivemethod. The default behavior is case sensitive. To define it as case insensitive use: case-
sensitive="false" in the enum-transformer element.

Use one XMLmapping file for each entity attribute.

Note: This converter can be used for both the to_DB_class and from_DB_class fields in the
transformations.txt file.

Input File XSD:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="enum-transformer">

<xs:complexType>

<xs:sequence>

<xs:element ref="value" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="db-type" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="integer"/>

<xs:enumeration value="long"/>

<xs:enumeration value="float"/>

<xs:enumeration value="double"/>

<xs:enumeration value="boolean"/>

<xs:enumeration value="string"/>

<xs:enumeration value="date"/>

<xs:enumeration value="xml"/>

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 160 of 503

<xs:enumeration value="bytes"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="cmdb-type" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="integer"/>

<xs:enumeration value="long"/>

<xs:enumeration value="float"/>

<xs:enumeration value="double"/>

<xs:enumeration value="boolean"/>

<xs:enumeration value="string"/>

<xs:enumeration value="date"/>

<xs:enumeration value="xml"/>

<xs:enumeration value="bytes"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="non-existing-value-action" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="return-null"/>

<xs:enumeration value="return-original"/>

<xs:enumeration value="throw-exception"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="case-sensitive" use="optional">

<xs:simpleType>

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 161 of 503

<xs:restriction base="xs:boolean">

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name="value">

<xs:complexType>

<xs:attribute name="cmdb-value" type="xs:string" use="required"/>

<xs:attribute name="external-db-value" type="xs:string" use="required"/>

<xs:attribute name="is-cmdb-value-null" type="xs:boolean"
use="optional"/>

<xs:attribute name="is-db-value-null" type="xs:boolean" use="optional"/>

</xs:complexType>

</xs:element>

</xs:schema>

Example of Converting 'sys' Value to 'System' Value:

In this example, sys value in the CMDB is transformed into System value in the federated database,
and System value in the federated database is transformed into sys value in the CMDB.

If the value does not exist in the XML file (for example, the string demo), the converter returns the same
input value it receives.

<enum-transformer CMDB-type="string" DB-type="string" non-existing-value-
action="return-original" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/generic-enum-transformer.xsd">
 <value CMDB-value="sys" external-DB-value="System" />
</enum-transformer>

Example of Converting an External or CMDB Value to a Null Value:

In this example, a value of NNN in the remote database is transformed into a null value in the
CMDBdatabase.

<value cmdb-value="null" is-cmdb-value-null="true" external-db-value="NNN"/>

In this example, the valueOOO in the CMDB is transformed into a null value in the remote database.

<value cmdb-value="OOO" external-db-value="null" is-db-value-null="true"/>

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 162 of 503

The SuffixTransformer Converter

This converter is used to add or remove suffixes from the CMDB or federated database source value.

There are two implementations:

l com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
AddSuffixTransformer. Adds the suffix (given as input) when converting from federated database
value to CMDB value and removes the suffix when converting from CMDB value to federated
database value.

l com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
RemoveSuffixTransformer. Removes the suffix (given as input) when converting from federated
database value to CMDB value and adds the suffix when converting from CMDB value to federated
database value.

The PrefixTransformer Converter

This converter is used to add or remove a prefix from the CMDB or federated database value.

There are two implementations:

l com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
AddPrefixTransformer. Adds the prefix (given as input) when converting from federated database
value to CMDB value and removes the prefix when converting from CMDB value to federated
database value.

l com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.AdapterToCmdb
RemovePrefixTransformer. Removes the prefix (given as input) when converting from federated
database value to CMDB value and adds the prefix when converting from CMDB value to federated
database value.

The BytesToStringTransformer Converter

This converter is used to convert byte arrays in the CMDB to their string representation in the federated
database source.

The converter is:
com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.CmdbToAdapterBytes
ToStringTransformer.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 163 of 503

The StringDelimitedListTransformer Converter

This converter is used to transform a single string list to an integer/string list in the CMDB.

The converter is: com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
StringDelimitedListTransformer.

The Custom Converter

It is possible to write your own custom converter (transformer) from scratch. This enables you to create
any converter required for your needs.

There are two ways to write a custom converter:

1. Write a compiled Java converter

a. Create a Java Project in a Java IDE (such as Eclipse, Intellij, or Netbeans).

b. Add the federation-api.jar and db-interfaces.jar to your class path.

c. Create a Java class that implements the following interfaces (from db-interfaces.jar):

l FcmdbDalTransformerFromExternalDB

l FcmdbDalTransformerValuesToExternalDB

l FcmdbDalTransformerInit

d. Compile the project and create a jar file.

e. Place the jar file in the adapter’s package (under adapterCode\<Adapter ID>)

f. Deploy the package.

g. Add the new converter class name to the transformations.txt file.

2. Write a Groovy (script based) converter

An example is found in the original GDBA package, GroovyExampleTransformer.groovy.

a. Create a Groovy file in the adapter’s package (under adapterCode\<Adapter ID>). You can do
this directly using the Adapter Management menu.

b. Create aGroovy class that implements the following interfaces (from db-interfaces.jar):

l FcmdbDalTransformerFromExternalDB

l FcmdbDalTransformerValuesToExternalDB

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 164 of 503

l FcmdbDalTransformerInit

c. Add the new converter Groovy class name to the transformations.txt file accordingly.

Note: Groovy is a scripting language that extends Java. Regular Java code is valid Groovy
code as well.

Plug-ins
The generic database adapter supports the following plugins:

l An optional plug-in for full topology synchronization.

l An optional plug-in for synchronizing changes in topology. If no plug-in for synchronizing changes is
implemented, it is possible to perform a differential synchronization, but that synchronization will
actually be a full one.

l An optional plug-in for synchronizing layout.

l An optional plug-in to retrieve supported queries for synchronization. If this plugin is not defined, all
TQL names are returned.

l An internal, optional plug-in to change the TQL definition and TQL result.

l An internal, optional plug-in to change a layout request and CIs result.

l An internal, optional plug-in to change a layout request and relationships result.

l An internal, optional plug-in to change the action of push Back IDs.

For details about implementing and deploying plug-ins, see "Implement a Plug-in" on page 119.

Configuration Examples
This section gives examples of configurations.

This section includes the following topics:

l "Use Case" on the next page

l "Single Node Reconciliation" on the next page

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 165 of 503

l "TwoNode Reconciliation" on page 169

l "Using a Primary Key that Contains More ThanOneColumn" on page 171

l "Using Transformations" on page 173

Use Case

A TQL query is:

node > (composition) > card

where:

l node is the CMDB entity

l card is the federated database source entity

l composition is the relationship between them

The example is run against the ED database. ED nodes are stored in the Device table and card is
stored in the hwCards table. In the following examples, card is always mapped in the samemanner.

Single Node Reconciliation

In this example the reconciliation is run against the name property.

Simplified Definition

The reconciliation is done by node and it is emphasized by the special tagCMDB-class.

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
 <CMDB-class CMDB-class-name="node" default-table-name="Device">
 <primary-key column-name="Device_ID" />
 <reconciliation-by-single-node>
 <or>
 <attribute CMDB-attribute-name="name" column-name="Device_Name"
/>
 </or>
 </reconciliation-by-single-node>
 </CMDB-class>
 <class CMDB-class-name="card" default-table-name="hwCards" connected-CMDB-
class-name="node" link-class-name="composition">
 <foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 166 of 503

column="Device_ID
 <primary-key column-name="hwCards_Seq" />
 <attribute CMDB-attribute-name="card_class" column-name="hwCardClass" />
 <attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"
/>
 <attribute CMDB-attribute-name="card_name" column-name="hwCardName" />
 </class>
</generic-DB-adapter-config>

Advanced Definition

The orm.xml File

Pay attention to the addition of the relationship mapping. For details, see the definition section in "The
orm.xml File" on page 138.

Example of the orm.xml File:

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/
persistence/orm http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
version="1.0">

<description>Generic DB adapter orm</description>
<package>generic_db_adapter</package>
<entity class="generic_db_adapter.node" >

<table name="Device"/>
<attributes>

<id name="id1">
<column name="Device_ID"

insertable="false"
updatable="false"/>

<generated-value strategy="TABLE"/>
</id>
<basic name="name">

<column name="Device_Name"/>
</basic>

</attributes>
</entity>
<entity class="generic_db_adapter.card" >

<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="hwCards_Seq" insertable="false"

updatable="false"/>

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 167 of 503

<generated-value strategy="TABLE"/>
</id>
<basic name="card_class">

<column name="hwCardClass" insertable="false"
updatable="false"/>

</basic>
<basic name="card_vendor">

<column name="hwCardVendor" insertable="false"
updatable="false"/>

</basic>
<basic name="card_name">

<column name="hwCardName" insertable="false"
updatable="false"/>

</basic>
</attributes>

</entity>
<entity class="generic_db_adapter.node_composition_card" >

<table name="hwCards"/>
<attributes>

<id name="id1">
<column name="hwCards_Seq" insertable="false"

updatable="false"/>
<generated-value strategy="TABLE"/>

</id>
<many-to-one name="end1" target-entity="node">

<join-column name="Device_ID" insertable="false"
updatable="false"/>

</many-to-one>
<one-to-one name="end2" target-entity="card"

> <join-column name="hwCards_Seq"
referenced-column-name="hwCards_Seq" insertable=
"false" updatable="false"/>

</one-to-one>
</attributes>

</entity>
</entity-mappings>

The reconciliation_rules.txt File

For details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page 151.

multinode[node] expression[node.name]

The transformation.txt File

This file remains empty as no values need to be converted in this example.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 168 of 503

Two Node Reconciliation

In this example, reconciliation is calculated according to the name property of node and of ip_address
with different variations.

The reconciliation TQL query is node > (containment) > ip_address.

Simplified Definition

The reconciliation is by name of node OR of ip_address:

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
 <CMDB-class CMDB-class-name="node" default-table-name="Device">
 <primary-key column-name="Device_ID" />
 <reconciliation-by-two-nodes connected-node-CMDB-class-name="ip_address"
CMDB-link-type="containment">
 <or>
 <attribute CMDB-attribute-name="name" column-name="Device_Name"
/>
 <connected-node-attribute CMDB-attribute-name="name" column-
name="Device_PreferredIPAddress" />
 </or>
 </reconciliation-by-two-nodes>
 </CMDB-class>
 <class CMDB-class-name="card" default-table-name="hwCards" connected-CMDB-
class-name="node" link-class-name="containment">
 <foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-
column="Device_ID" />
 <primary-key column-name="hwCards_Seq" />
 <attribute CMDB-attribute-name="card_class" column-name="hwCardClass" />
 <attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"
/>
 <attribute CMDB-attribute-name="card_name" column-name="hwCardName" />
 </class>
</generic-DB-adapter-config>

The reconciliation is name of node AND of ip_address:

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
 <CMDB-class CMDB-class-name="node" default-table-name="Device">
 <primary-key column-name="Device_ID" />
 <reconciliation-by-two-nodes connected-node-CMDB-class-name="ip_address"
CMDB-link-type="containment">

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 169 of 503

 <and>
 <attribute CMDB-attribute-name="name" column-name="Device_Name"
/>
 <connected-node-attribute CMDB-attribute-name="name" column-
name="Device_PreferredIPAddress" />
 </and>
 </reconciliation-by-two-nodes>
 </CMDB-class>
 <class CMDB-class-name="card" default-table-name="hwCards" connected-CMDB-
class-name="node" link-class-name="containment">
 <foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-
column="Device_ID" />
 <primary-key column-name="hwCards_Seq" />
 <attribute CMDB-attribute-name="card_class" column-name="hwCardClass" />
 <attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"
/>
 <attribute CMDB-attribute-name="card_name" column-name="hwCardName" />
 </class>
</generic-DB-adapter-config>

The reconciliation is by name of ip_address:

<?xml version="1.0" encoding="UTF-8"?>
<generic-DB-adapter-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/simplifiedConfiguration.xsd">
 <CMDB-class CMDB-class-name="node" default-table-name="Device">
 <primary-key column-name="Device_ID" />
 <reconciliation-by-two-nodes connected-node-CMDB-class-name="ip_address"
CMDB-link-type="containment">
 <or>
 <connected-node-attribute CMDB-attribute-name="name" column-
name="Device_PreferredIPAddress" />
 </or>
 </reconciliation-by-two-nodes>
 </CMDB-class>
 <class CMDB-class-name="card" default-table-name="hwCards" connected-CMDB-
class-name="node" link-class-name="containment">
 <foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-
column="Device_ID" />
 <primary-key column-name="hwCards_Seq" />
 <attribute CMDB-attribute-name="card_class" column-name="hwCardClass" />
 <attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"
/>
 <attribute CMDB-attribute-name="card_name" column-name="hwCardName" />
 </class>
</generic-DB-adapter-config>

Advanced Definition

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 170 of 503

The orm.xml File

Since the reconciliation expression is not defined in this file, the same version should be used for any
reconciliation expression.

The reconciliation_rules.txt File

For details, see "The reconciliation_rules.txt File (for backwards compatibility)" on page 151.

multinode[node] expression[ip_address.name OR node.name] end1_type[node] end2_
type[ip_address] link_type[containment]

multinode[node] expression[ip_address.name AND node.name] end1_type[node] end2_
type[ip_address] link_type[containment]

multinode[node] expression[ip_address.name] end1_type[node] end2_type[ip_
address] link_type[containment]

The transformation.txt File

This file remains empty as no values need to be converted in this example.

Using a Primary Key that Contains More Than One Column

If the primary key is composed of more than one column, the following code is added to the XML
definitions:

Simplified Definition

There is more than one primary key tag and for each column there is a tag.

 <class CMDB-class-name="card" default-table-name="hwCards" connected-CMDB-
class-name="node" link-class-name="containment">
 <foreign-primary-key column-name="Device_ID" CMDB-class-primary-key-
column="Device_ID" />
 <primary-key column-name="Device_ID" />
 <primary-key column-name="hwBusesSupported_Seq" />
 <primary-key column-name="hwCards_Seq" />
 <attribute CMDB-attribute-name="card_class" column-name="hwCardClass" />
 <attribute CMDB-attribute-name="card_vendor" column-name="hwCardVendor"
/>
 <attribute CMDB-attribute-name="card_name" column-name="hwCardName" />
 </class>

Advanced Definition

The orm.xml File

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 171 of 503

A new id entity is added that maps to the primary key columns. Entities that use this id entity must
add a special tag.

If you use a foreign key (join-column tag) for such a primary key, youmust map between each column
in the foreign key to a column in the primary key.

For details, see "The orm.xml File" on page 138.

Example of the orm.xml File:

<entity class="generic_db_adapter.card" >
 <table name="hwCards" />
 <attributes>
 <id name="id1">
 <column name="Device_ID" insertable="false" updatable="false" />
 <generated-value strategy="TABLE" />
 </id>
 <id name="id2">
 <column name="hwBusesSupported_Seq" insertable="false"
updatable="false" />
 <generated-value strategy="TABLE" />
 </id>
 <id name="id3">
 <column name="hwCards_Seq" insertable="false" updatable="false"
/>
 <generated-value strategy="TABLE" />
 </id>

<entity class="generic_db_adapter.node_containment_card" >
 <table name="hwCards" />
 <attributes>
 <id name="id1">
 <column name="Device_ID" insertable="false" updatable="false" />
 <generated-value strategy="TABLE" />
 </id>
 <id name="id2">
 <column name="hwBusesSupported_Seq" insertable="false"
updatable="false" />
 <generated-value strategy="TABLE" />
 </id>
 <id name="id3">
 <column name="hwCards_Seq" insertable="false" updatable="false"
/>
 <generated-value strategy="TABLE" />
 </id>
 <many-to-one name="end1" target-entity="node">
 <join-column name="Device_ID" insertable="false"
updatable="false" />
 </many-to-one>

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 172 of 503

 <one-to-one name="end2" target-entity="card">
 <join-column name="Device_ID" referenced-column-name="Device_ID"
insertable="false" updatable="false" />
 <join-column name="hwBusesSupported_Seq" referenced-column-
name="hwBusesSupported_Seq" insertable="false" updatable="false" />
 <join-column name="hwCards_Seq" referenced-column-name="hwCards_
Seq" insertable="false" updatable="false" />
 </one-to-one>
 </attributes>
 </entity>
</entity-mappings>

Using Transformations

In the following example, the generic enum transformer is converted from values 1, 2, 3 to values a, b,
c respectively in the name column.

Themapping file is generic-enum-transformer-example.xml.

<enum-transformer CMDB-type="string" DB-type="string" non-existing-value-
action="return-original" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../META-CONF/generic-enum-transformer.xsd">
 <value CMDB-value="1" external-DB-value="a" />
 <value CMDB-value="2" external-DB-value="b" />
 <value CMDB-value="3" external-DB-value="c" />
</enum-transformer>

Simplified Definition

 <CMDB-class CMDB-class-name="node" default-table-name="Device">
 <primary-key column-name="Device_ID" />
 <reconciliation-by-two-nodes connected-node-CMDB-class-name="ip_address"

CMDB-link-type="containment">
 <or>
 <attribute CMDB-attribute-name="name" column-name="Device_Name"

from-CMDB-
converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.

transform.impl.GenericEnumTransformer(generic-enum-transformer-
example.

xml)" to-CMDB-
converter="com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.

transform.impl.GenericEnumTransformer(generic-enum-transformer-
example.

xml)" />
 <connected-node-attribute CMDB-attribute-name="name"

column-name="Device_PreferredIPAddress" />
 </or>

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 173 of 503

 </reconciliation-by-two-nodes>
 </CMDB-class>

Advanced Definition

There is a change only to the transformation.txt file.

The transformation.txt File

Make sure that the attribute names and entity names are the same as in the orm.xml file.

entity[node] attribute[name]
to_DB_class[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer(generic-enum-transformer-example.xml)] from_DB_class
[com.mercury.topaz.fcmdb.adapters.dbAdapter.dal.transform.impl.
GenericEnumTransformer(generic-enum-transformer-example.xml)]

Adapter Log Files
To understand the calculation flows and adapter lifecycle, and to view debug information, you can
consult the following log files.

This section includes the following topics:

l "Log Levels" below

l "Log Locations" on the next page

Log Levels

You can configure the log level for each of the logs.

In a text editor, open theC:\hp\UCMDB\UCMDBServer\conf\log\
fcmdb.gdba.properties
file.

The default log level is ERROR:

#loglevel can be any of DEBUG INFO WARN ERROR FATAL
loglevel=ERROR

l To increase the log level for all log files, change loglevel=ERROR to loglevel=DEBUG or
loglevel=INFO.

l To change the log level for a specific file, change the specific log4j category line accordingly. For

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 174 of 503

example, to change the log level of fcmdb.gdba.dal.sql.log to INFO, change:

log4j.category.fcmdb.gdba.dal.SQL=${loglevel},fcmdb.gdba.dal.SQL.appender

to:

log4j.category.fcmdb.gdba.dal.SQL=INFO,fcmdb.gdba.dal.SQL.appender

Log Locations

The log files are located in theC:\hp\UCMDB\UCMDBServer\runtime\log directory.

l Fcmdb.gdba.log

The adapter lifecycle log. Gives details about when the adapter started or stopped, and which CITs
are supported by this adapter.

Consult for initiation errors (adapter load/unload).

l fcmdb.log

Consult for exceptions.

l cmdb.log

Consult for exceptions.

l Fcmdb.gdba.mapping.engine.log

Themapping engine log. Gives details about the reconciliation TQL query that themapping engine
uses, and the reconciliation topologies that are compared during the connect phase.

Consult this log when a TQL query gives no results even though you know there are relevant CIs in
the database, or the results are unexpected (check the reconciliation).

l Fcmdb.gdba.TQL.log

The TQL log. Gives details about the TQL queries and their results.

Consult this log when a TQL query does not return results and themapping engine log shows that
there are no results in the federated data source.

l Fcmdb.gdba.dal.log

The DAL lifecycle log. Gives details about CIT generation and database connection details.

Consult this log when you cannot connect to the database or when there are CITs or attributes that
are not supported by the query.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 175 of 503

l Fcmdb.gdba.dal.command.log

The DAL operations log. Gives details about internal DAL operations that are called. (This log is
similar to cmdb.dal.command.log).

l Fcmdb.gdba.dal.SQL.log

The DAL SQL queries log. Gives details about called JPAQLs (object oriented SQL queries) and
their results.

Consult this log when you cannot connect to the database or when there are CITs or attributes that
are not supported by the query.

l Fcmdb.gdba.hibrnate.log

The Hibernate log. Gives details about the SQL queries that are run, the parsing of each JPAQL to
SQL, the results of the queries, data regarding Hibernate caching, and so on. For details on
Hibernate, see "Hibernate as JPA Provider" on page 101.

External References
For details on the JavaBeans 3.0 specification, see
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html.

Troubleshooting and Limitations – Developing

Generic Database Adapters
This section describes troubleshooting and limitations for the generic database adapter.

General Limitations

l When you update an adapter package, use Notepad++, UltraEdit, or some other third-party text
editor rather than Notepad (any version) fromMicrosoft Corporation to edit the template files. This
prevents the use of special symbols, which cause the deployment of the prepared package to fail.

l In most of the cases, after making a change, it is needed to reload the adapter on the probe side,
otherwise the adapter will not function properly

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 176 of 503

http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html

a. Log in to the probe JMX console: https://localhost:8453/

b. Locate the adapters bean, and reload adapter with the integration point name.

If the adapter is not reloaded after each change, issues may occor (wrong error messages, query
failures, and so on).

JPA Limitations

l All tables must have a primary key column.

l CMDB class attribute names must follow the JavaBeans naming convention (for example, names
must start with lower case letters).

l TwoCIs that are connected with one relationship in the class model must have direct association in
the database (for example, if node is connected to ticket theremust be a foreign key or linkage
table that connects them).

l Several tables that aremapped to the sameCIT must share the same primary key table.

Functional Limitations

l You cannot create amanual relationship between the CMDB and federated CITs. To be able to
define virtual relationships, a special relationship logic must be defined (it can be based on
properties of the federated class).

l Federated CITs cannot be trigger CITs in an impact rule, but they can be included in an impact
analysis TQL query.

l A federated CIT can be part of an enrichment TQL, but cannot be used as the node on which
enrichment is performed (you cannot add, update, or delete the federated CIT).

l Using a class qualifier in a condition is not supported.

l Subgraphs are not supported.

l Compound relationships are not supported.

l The external CI CMDBid is composed from its primary key and not its key attributes.

l A column of type bytes cannot be used as a primary key column inMicrosoft SQL Server.

l TQL query calculation fails if attribute conditions that are defined on a federated node have not had
their names mapped in the orm.xml file.

Developer ReferenceGuide
Chapter 5: Developing Generic Database Adapters

Micro Focus Universal CMDB (10.33) Page 177 of 503

Chapter 6: Developing Java Adapters
This chapter includes:

Federation Framework Overview 178

Adapter andMapping Interaction with the Federation Framework 183

Federation Framework for Federated TQLQueries 184

Interactions between the Federation Framework, Server, Adapter, andMapping Engine 185

Federation Framework Flow for Population 195

Adapter Interfaces 196

Debug Adapter Resources 198

Add an Adapter for a New External Data Source 199

Create a Sample Adapter 207

XMLConfiguration Tags and Properties 208

The DataAdapterEnvironment Interface 210

Federation Framework Overview

Note:

l The term relationship is equivalent to the term link.

l The term CI is equivalent to the term object.

l A graph is a collection of nodes and links.

The Federation Framework functionality uses an API to retrieve information from federated sources.
The Federation Framework provides threemain capabilities:

l Federation on the fly. All queries are run over original data repositories and results are built on the
fly in the CMDB.

l Population. Populates data (topological data and CI properties) to the CMDB from an external data
source.

l Data Push. Pushes data (topological data and CI properties) from the local CMDB to a remote data
source.

Micro Focus Universal CMDB (10.33) Page 178 of 503

All action types require an adapter for each data repository, which can provide the specific capabilities
of the data repository and retrieve and/or update the required data. Every request to the data repository
is made through its adapter.

This section also includes the following topics:

l "Federation on the Fly" below

l "Data Push" on the next page

l "Population" on page 181

Federation on the Fly

Federated TQL queries enables data retrieval from any external data repository without replicating its
data.

A federated TQL query uses adapters that represent external data repositories, to create appropriate
external relationships between CIs from different external data repositories and the UCMDB CIs.

Example of Federation-on-the-Fly Flow:

1. The Federation Framework splits a federated TQL query into several subgraphs, where all
nodes in a subgraph refer to the same data repository. Each subgraph is connected to the
other subgraphs by a virtual relationship (but itself contains no virtual relationships).

2. After the federated TQL query is split into subgraphs, the Federation Framework calculates
each subgraph's topology and connects two appropriate subgraphs by creating virtual
relationships between the appropriate nodes.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 179 of 503

3. After the federated TQL topology is calculated, the Federation Framework retrieves a layout
for the topology result.

Data Push

You use the data push flow to synchronize data from your current local CMDB to a remote service or
target data repository.

In data push, data repositories are divided into two categories: source (local CMDB) and target. Data is
retrieved from the source data repository and updated to the target data repository. The data push
process is based on query names, meaning that data is synchronized between the source (local
CMDB) and target data repositories, and is retrieved by a TQL query name from the local CMDB.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 180 of 503

The data push process flow includes the following steps:

1. Retrieving the topology result with signatures from the source data repository.

2. Comparing the new results with the previous results.

3. Retrieving a full layout (that is, all CI properties) of CIs and relationships, for changed results only.

4. Updating the target data repository with the received full layout of CIs and relationships. If any CIs
or relationships are deleted in the source data repository and the query is exclusive, the replication
process removes the CIs or relationships in the target data repository as well.

The CMDB has 2 hidden data sources (hiddenRMIDataSource and hiddenChangesDataSource),
which are always the `source' data source in data push flows. To implement a new adapter for data
push flows, you only have to implement the `target' adapter.

Population

You use the population flow to populate the CMDB with data from external sources.

The flow always uses one 'source' data source to retrieve the data, and pushes the retrieved data to the
Probe in a similar process to the flow of a discovery job.

To implement a new adapter for population flows, you only have to implement the source adapter, since
the Data Flow Probe acts as the target.

The adapter in the population flow is executed on the Probe. Debugging and logging should be done on
the Probe and not on the CMDB.

The population flow is based on query names, that is, data is synchronized between the source data
repository and the Data Flow Probe, and is retrieved by a query name in the source data repository. For
example, in UCMDB, the query name is the name of the TQL query. However, in another data
repository the query name can be a code name that returns data. The adapter is designed to correctly
handle the query name.

Each job can be defined as an exclusive job. This means that the CIs and relationships in the job
results are unique in the local CMDB, and no other query can bring them to the target. The adapter of
the source data repository supports specific queries, and can retrieve the data from this data repository.
The adapter of the target data repository enables the update of retrieved data on this data repository.

SourceDataAdapter Flow

l Retrieves the topology result with signatures from the source data repository.

l Compares the new results with the previous results.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 181 of 503

l Retrieves a full layout (that is, all CI properties) of CIs and relationships, for changed results only.

l Updates the target data repository with the received full layout of CIs and relationships. If any CIs
or relationships are deleted in the source data repository and the query is exclusive, the replication
process removes the CIs or relationships in the target data repository as well.

SourceChangesDataAdapter Flow

l Retrieves the topology result that occurred since the last date given.

l Retrieves a full layout (that is, all CI properties) of CIs and relationships, for changed results only.

l Updates the target data repository with the received full layout of CIs and relationships. If any CIs
or relationships are deleted in the source data repository and the query is exclusive, the replication
process removes the CIs or relationships in the target data repository as well.

PopulateDataAdapter Flow

l Retrieves the full topology with requested layout result.

l Uses the topology chunk mechanism to retrieve the data in chunks.

l The probe filters out any data that was already brought in earlier runs

l Updates the target data repository with the received layout of CIs and relationships. If any CIs or
relationships are deleted in the source data repository and the query is exclusive, the replication
process removes the CIs or relationships in the target data repository as well.

PopulateChangesDataAdapter Flow

l Retrieves the topology with requested layout result that has changes since the last run.

l Uses the topology chunk mechanism to retrieve the data in chunks.

l The probe filters out any data that was already brought in earlier runs (including this flow).

l Updates the target data repository with the received layout of CIs and relationships. If any CIs or
relationships are deleted in the source data repository and the query is exclusive, the replication
process removes the CIs or relationships in the target data repository as well.

Instance-Based Population Flow

If the adapter is defined to support an instance-based flow (by means of the <instance-based-data>
tag, as described in "XMLConfiguration Tags and Properties" on page 208), the population engine
automatically finds removed CIs inside the instance and removes them from the UCMDB (assuming
deletion is allowed for the specific population job). Each instancemust have a Root CI, marked in the
TQL definition with the nameRoot. Each time a root CI is passed, its entire instance (all the CIs

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 182 of 503

connected to it) are compared to the last time it was sent to UCMDB, and any CIs that were connected
to the root but are now not connected to it are deleted from UCMDB. For the adapter to correctly
support instance-based flow, any change to any CI or attribute in the entire instancemust trigger a
resend of the entire instance to UCMDB.

Adapter and Mapping Interaction with the

Federation Framework
An adapter is an entity in UCMDB that represents external data (data that is not saved in UCMDB). In
federated flows, all interactions with external data sources are performed through adapters. The
Federation Framework interaction flow and adapter interfaces are different for replication and for
federated TQL queries.

This section also includes the following topics:

l "Adapter Lifecycle" below

l "Adapter assist Methods" below

Adapter Lifecycle

An adapter instance is created for each external data repository. The adapter begins its lifecycle with
the first action applied to it (such as, calculate TQL or retrieve/update data). When the start
method is called, the adapter receives environmental information, such as the data repository
configuration, logger, and so on. The adapter lifecycle ends when the data repository is removed from
the configuration, and the shutdownmethod is called. This means that the adapter is stateful and can
contain the connection to the external data repository if it is required.

Adapter assist Methods

The adapter has several assistmethods that can add external data repository configurations. These
methods are not part of the adapter lifecycle and create a new adapter each time they are called.

l The first method tests the connection to the external data repository for a given configuration.
testConnection can be executed either on the UCMDB server or the Data Flow Probe, depending
on the type of adapter.

l The secondmethod is relevant only for the source adapter and returns the supported queries for

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 183 of 503

replication. (This method is executed on the Probe only.)

l The third method is relevant only for federation and population flows, and returns supported external
classes by the external data repository. (This method is executed on the UCMDB server.)

All thesemethods are used when you create or view integration configurations.

Federation Framework for Federated TQL Queries
This section includes the following topics:

l "Definitions and Terms" below

l "Mapping Engine" on the next page

l "Federated Adapter" on the next page

See "Interactions between the Federation Framework, Server, Adapter, andMapping Engine" on the
next page for diagrams illustrating the interactions between the Federation Framework, UCMDB,
adapter, andMapping Engine.

Definitions and Terms

Reconciliation data. The rule for matching CIs of the specified type that are received from the CMDB
and the external data repository. The reconciliation rule can be of three types:

l ID reconciliation. This can be used only if the external data repository contains the CMDB ID of
reconciliation objects.

l Property reconciliation. This is used when thematching can be done by properties of the
reconciliation CI type only.

l Topology reconciliation. This is used when you need the properties of additional CITs (not only of
the reconciliation CIT) to perform amatch on reconciliation CIs. For example, you can perform
reconciliation of the node type by the name property that belongs to the ip_address CIT.

Reconciliation object. The object is created by the adapter according to received reconciliation data.
This object should refer to an external CI and is used by theMapping Engine to connect between the
external CIs and the CMDB CIs.

Reconciliation CI type. The type of CIs that represent reconciliation objects. These CIs must be
stored in both the CMDB and in the external data repositories.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 184 of 503

Mapping engine. A component that identifies relations between CIs from different data repositories
that have a virtual relationship between them. The identification is performed by reconciling CMDB
reconciliation objects and external CI reconciliation objects.

Mapping Engine

Federation Framework uses theMapping Engine to calculate the federated TQL query. TheMapping
Engine connects between CIs that are received from different data repositories and are connected by
virtual relationships. TheMapping Engine also provides reconciliation data for the virtual relationship.
One end of the virtual relationship must refer to the CMDB. This end is a reconciliation type. For the
calculation of the two subgraphs, a virtual relationship can start from any end node.

Federated Adapter

The Federated adapter brings two kinds of data from external data repositories: external CI data and
reconciliation objects that belong to external CIs.

l External CI data. The external data that does not exist in the CMDB. It is the target data of the
external data repository.

l Reconciliation object data. The auxiliary data that is used by the federation framework to connect
between CMDB CIs and external data. Each reconciliation object should refer to an External CI.
The type of reconciliation object is the type (or subtype) of one of the virtual relationship ends from
which data is retrieved. Reconciliation objects should fit the adapter received to reconciliation data.
The reconciliation object can be one of three types: IdReconciliationObject,
PropertyReconciliationObject, or TopologyReconciliationObject.

In the DataAdapter-based interfaces (DataAdapter, PopulateDataAdapter, and
PopulateChangesDataAdapter), the reconciliation is requested as part of the query definition.

Interactions between the Federation Framework,

Server, Adapter, and Mapping Engine
The following diagrams illustrate the interactions between the Federation Framework, UCMDB Server,
the adapter, and theMapping Engine. The federated TQL query in the example diagrams has only one
virtual relationship, so that only the UCMDB and one external data repository are involved in the
federated TQL query.

This section includes the following topics:

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 185 of 503

l "Calculation Starts at the Server End" below

l "Calculation Starts at the External Adapter End" on page 189

l "Example of Federation Framework Flow for Federated TQLQueries" on page 190

In the first diagram the calculation begins in the UCMDB and in the second diagram in the external
adapter. Each step in the diagram includes references the appropriate method call of the adapter or
mapping engine interface.

Calculation Starts at the Server End

The following sequence diagram illustrates the interaction between the Federation Framework,
UCMDB, the adapter, and theMapping Engine. The federated TQL query in the example diagram has
only one virtual relationship, so that only UCMDB and one external data repository are involved in the
federated TQL query.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 186 of 503

The numbers in this image are explained below:

Number Explanation

1 The Federation Framework receives a call for a federated TQL calculation.

2 The Federation Framework analyzes the adapter, finds the virtual relationship, and
divides the original TQL into two sub-adapters–one for UCMDB and one for the external
data repository.

3 The Federation Framework requests the topology of the sub-TQL from UCMDB.

4 After receiving the topology results, the Federation Framework calls the appropriate
Mapping Engine for the current virtual relationship and requests reconciliation data. The
reconciliationObject parameter is empty at this stage, that is, no condition is added to
reconciliation data in this call. The returned reconciliation data defines which data is

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 187 of 503

Number Explanation

needed tomatch the reconciliation CIs in UCMDB to the external data repository. The
reconciliation data can be one of the following types:

l IdReconciliationData. CIs are reconciled according to their ID.

l PropertyReconciliationData. CIs are reconciled according to the properties of one of
the CIs.

l TopologyReconciliationData. CIs are reconciled according to the topology (for
example, to reconcile node CIs, the IP address of IP is required too).

5 The Federation Framework requests reconciliation data for the CIs of the virtual
relationship ends that were received in step "3" on the previous page from UCMDB.

6 The Federation Framework calls theMapping Engine to retrieve the reconciliation data. In
this state (by contrast with step "3" on the previous page), theMapping Engine receives
the reconciliation objects from step "5" above as parameters. TheMapping Engine
translates the received reconciliation object to the condition on the reconciliation data.

7 The Federation Framework requests the topology of the sub-TQL from the external data
repository. The external adapter receives the reconciliation data from step "6" above as a
parameter.

8 The Federation Framework calls theMapping Engine to connect between the received
results. The firstResult parameter is the external topology result received from
UCMDB in step "5" above and the secondResult parameter is the external topology
result received from the External Adapter in step "7" above. TheMapping Engine returns a
mapwhere External CI ID from the first data repository (UCMDB in this case) is mapped
to the External CI IDs from the second (external) data repository.

9 For eachmapping, the Federation Framework creates a virtual relationship.

10 After the calculation of the federated TQL query results (only at the topology stage), the
Federation Framework retrieves the original TQL layout for the resulting CIs and
relationships from the appropriate data repositories.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 188 of 503

Calculation Starts at the External Adapter End

The numbers in this image are explained below:

Number Explanation

1 The Federation Framework receives a call for an federated TQL calculation.

2 The Federation Framework analyzes the adapter, finds the virtual relationship, and
divides the original TQL into two sub-adapters – one for UCMDB and one for the
external data repository.

3 The Federation Framework requests the topology of the sub-TQL from the External
Adapter. The returned ExternalTopologyResult is not supposed to contain any
reconciliation object, since the reconciliation data is not part of the request.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 189 of 503

Number Explanation

4 After receiving the topology results, the Federation Framework calls the appropriate
Mapping Engine with the current virtual relationship and requests reconciliation data.
The reconciliationObjects parameter is empty at this state, that is, no condition is
added to the reconciliation data in this call. The returned reconciliation data defines
what data is needed tomatch the reconciliation CIs in UCMDB to the external data
repository. The reconciliation data can be one of three following types:

l IdReconciliationData. CIs are reconciled according to their ID.

l PropertyReconciliationData. CIs are reconciled according to the properties of one
of the CIs.

l TopologyReconciliationData. CIs are reconciled according to the topology (for
example, to reconcile node CIs, the IP address of IP is required too).

5 The Federation Framework requests reconciliation objects for the CIs that were
received in step 3 from the external data repository. The Federation Framework calls
the getTopologyWithReconciliationData()method in the External Adapter, where the
requested topology is a one-node topology with CIs received in step 3 as the ID
condition and reconciliation data from step 4.

6 The Federation Framework calls theMapping Engine to retrieve the reconciliation data.
In this state (by contrast with step 3), theMapping Engine receives the reconciliation
objects from step 5 as parameters. TheMapping Engine translates the received
reconciliation object to the condition on the reconciliation data.

7 The Federation Framework requests the topology of the sub-TQLwith reconciliation
data from step 6 from UCMDB.

8 The Federation Framework calls theMapping Engine to connect between the received
results. The firstResult parameter is the external topology result received from the
External Adapter at step 5 and the secondResult parameter is the external topology
result received from UCMDB at step 7. TheMapping Engine returns amapwhere the
External CI ID from the first data repository (the external data repository in this case) is
mapped to the External CI IDs from the second data repository (UCMDB).

9 For eachmapping, the Federation Framework creates a virtual relationship.

10 After the calculation of the federated TQL query results (only at the topology stage), the
Federation Framework retrieves the original TQL layout for the resulting CIs and
relationships from the appropriate data repositories.

Example of Federation Framework Flow for Federated TQL Queries

This example explains how to view all open incidents on specific nodes. The ServiceCenter data
repository is the external data repository. The node instances are stored in UCMDB, and the incident
instances are stored in ServiceCenter. It is assumed that to connect the incident instances to the

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 190 of 503

appropriate node, the node and ip_address properties of the host and IP are needed. These are
reconciliation properties that identify the nodes from ServiceCenter in UCMDB.

Note: For attribute federation, the adapter's getTopologymethod is called. The reconciliation
data is adapted in the user TQL (in this case, the CI element).

1. After analyzing the adapter, the Federation Framework recognizes the virtual relationship between
Node and Incident and splits the federated TQL query into two subgraphs:

2. The Federation Framework runs the UCMDB subgraph to request the topology, and receives the
following results:

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 191 of 503

3. The Federation Framework requests, from the appropriate Mapping Engine, the reconciliation data
for the first data repository (UCMDB) that contains the information to connect between received
data from two data repositories. The reconciliation data in this case is:

4. The Federation Framework creates a one-node topology query with the Node and ID conditions on
it from the previous result (node in H1, H2, H3), and runs this query with the required reconciliation
data on UCMDB. The result includes Node CIs that are relevant to the ID condition and the
appropriate reconciliation object for each CI:

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 192 of 503

5. The reconciliation data for ServiceCenter should contain a condition for node and ip that is derived
from the reconciliation objects received from UCMDB:

6. The Federation Framework runs the ServiceCenter subgraph with the reconciliation data to
request the topology and appropriate reconciliation objects, and receives the following results:

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 193 of 503

7. The result after connection in Mapping Engine and creating virtual relationships is:

8. The Federation Framework requests the original TQL layout for received instances from UCMDB
and ServiceCenter.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 194 of 503

Federation Framework Flow for Population
This section includes the following topics:

l "Definitions and Terms" below

l "Flow Diagram" below

Definitions and Terms

Signature. Denotes the state of properties in the CI. If changes aremade to property values in a CI,
the CI signaturemust also be changed. The CI signature helps to detect whether a CI has changed
without retrieving and comparing all CI properties. Both the CI and the CI signature are provided by the
appropriate adapter. The adapter is responsible for changing the CI signature when the CI properties
are altered.

Flow Diagram

The following sequence diagram illustrates the interaction between the Federation Framework and the
source and target adapters in a population flow:

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 195 of 503

1. The Federation Framework receives the topology for the query result from the source adapter. The
adapter recognizes the query by its name and runs it on the external data repository. The topology
result contains the ID and signature for each CI and relationship in the result. The ID is the logical
ID that defines the CI as unique in the external data repository. The signature should bemodified if
the CI or relationship is modified.

2. The Federation Framework uses signatures to compare the newly received topology query results
with the saved ones, and to determine which CIs have changed.

3. After the Federation Framework finds the CIs and relationships that have changed, it calls the
source adapter with the IDs of the changed CIs and relationships as a parameter to retrieve their
full layout.

4. The Federation Framework sends the update to the target adapter. The target adapter updates the
external data source with the received data.

5. After the update, the Federation Framework saves the last query result.

Adapter Interfaces
This section includes the following topics:

l "Definitions and Terms" below

l "Adapter Interfaces for Federated TQLQueries" below

Definitions and Terms

External Relation. The relation between two external CI types that are supported by the same
adapter.

Adapter Interfaces for Federated TQL Queries

Use the appropriate adapter interface for each adapter, as follows.

l A Single Node topology interface is used when the adapter does not support any external
relations; that is, the adapter is never meant to receive a request with more than one external CI.
The reconciliation data needed to complete the operation can be described as complex query (see
SingleNodeFederationTopologyReconciliationAdapter below).

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 196 of 503

All SingleNode interfaces are created to simplify the workflow; for those cases where you need to
use amore extensive query, use the FederationTopologyAdapter interface.

l A FederationTopologyAdapter interface is used to define adapters that support complex
federated queries. The reconciliation request in these adapters is part of theQueryDefinition
parameter.

The Federation engine uses reconciliation data in order to connect the federated data to the proper
local CIs. Reconciliation datamay be fetched inmore than one request (calculated recursively
according to results). In this case, the adapter receives a request with only reconciliation data.

SingleNode Interfaces

The following interfaces have different types of reconciliation data:

l SingleNodeFederationIdReconciliationAdapter. Use if the adapter supports a single-node
TQL and the reconciliation between data repositories is calculated by the ID.

l SingleNodeFederationPropertyReconciliationAdapter. Use if the adapter supports a single-
node TQL and the reconciliation between data repositories is done by the properties of one CI.

l SingleNodeFederationTopologyReconciliationAdapter. Use if the adapter supports a single-
node TQL and the reconciliation between data repositories is done by topology. The adapter should
support the case where the query element is empty and only reconciliation topology is requested.

Data Adapter Interfaces

l FederationTopologyAdapter. Use this adapter to support complex federated TQL queries. Allows
themost diversity. The adapter should support the case where the query definition is describing
only reconciliation data.

l PopulateDataAdapter. Use this adapter to support complex federated TQL queries and population
flows. In a population flow, this adapter retrieves the entire data set, and lets the probe filter the
difference since the last execution of the job.

l PopulateChangesDataAdapter. Use this adapter to support complex federated TQL queries and
population flows. In a population flow, this adapter supports the retrieval of only the changes that
occurred since the last execution of the job.

Note: When developing an adapter that may return large data sets of data, its important to allow
chunking by implementing the ChunkGetter Interface. See the Java document of the specific
adapter for more information.

Resource Reporting Interfaces

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 197 of 503

The following interfaces enable the adapter to report the resources that can be configured to customize
the adapter's behavior. This enables you to edit these resources directly from the Integration Studio.
These interfaces should be used in addition to the regular adapter interfaces above.

l PopulationQueriesResourcesLocator. Defines which resources may be edited for each specific
Population query.

l PushQueriesResourceLocator. Defines which resources may be edited for each Data Push
query.

l GeneralResourcesLocator. Defines which general resources may be edited in this adapter.

Additional Interfaces

l SortResultDataAdapter. Use if you can sort the resulting CIs in the external data repository.

l FunctionalLayoutDataAdapter. Use if you can calculate the functional layout in the external data
repository.

Adapter Interfaces for Synchronization

l SourceDataAdapter. Use for source adapters in population flows.

l TargetDataAdapter. Use for target adapters in data push flows.

Debug Adapter Resources
This task describes how to use the JMX console to create, view, and delete adapter state resources
(any resources created using the resourcemanipulationmethods in the DataAdapterEnvironment
interface, which are saved in the UCMDB database or the Probe database) for debugging and
development purposes.

1. Launch theWeb browser and enter the server address, as follows:

o For the UCMDB server: https://localhost:8443/jmx-console

o For the Probe: http://localhost:1977

Youmay have to log in with a user name and password (default user name: sysadmin).

2. To open the JMX MBEAN View page, do one of the following:

o On the UCMDB server: click
UCMDB:service=FCMDB Adapter State Resource Services

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 198 of 503

o On the Probe: click type=AdapterStateResources

3. Enter values in the operations that you want to use, and click Invoke.

Add an Adapter for a New External Data Source
This task explains how to define an adapter to support a new external data source.

This task includes the following steps:

l "Prerequisites" below

l "Define Valid Relationships for Virtual Relationships" on the next page

l "Define an Adapter Configuration" on the next page

l "Define Supported Classes" on page 204

l "Implement the Adapter" on page 205

l "Define Reconciliation Rules or Implement theMapping Engine" on page 206

l "Add Jars Required for Implementation to the Class Path" on page 206

l "Deploy the Adapter" on page 206

l "Update the Adapter" on page 207

1. Prerequisites

Model-supported adapter classes for CIs and relationships in the UCMDB DataModel. As an
adapter developer, you should:

o have knowledge of the hierarchy of the UCMDB CI types to understand how external CITs are
related to the UCMDB CITs

o model the external CITs in the UCMDB class model

o add the definitions for new CI types and their relationships

o define valid relationships in the UCMDB class model for the valid relationships between
adapter inner classes. (The CITs can be placed at any level of the UCMDB class model tree.)

Modeling should be the same regardless of federation type (on the fly or replication). For details on
adding new CIT definitions to the UCMDB class model, seeWorking with the CI Selector in the
Universal CMDB Modeling Guide.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 199 of 503

For the adapter to support federated attributes on CITs, add this CIT to the supported classes with
supported attributes and the reconciliation rule for this CIT.

2. Define Valid Relationships for Virtual Relationships

Note: This section is only relevant for federation.

To retrieve federated CITs that are connected to local CMDB CITs, a valid link definitionmust
exist between the two CITs in the CMDB.

a. Create a valid links XML file that contains these links (if they do not already exist).

b. Add the links XML file to the adapter package in the \validlinks folder. For details, see in the
Universal CMDB Administration Guide.

Example of Valid Relationship Definition:

In the following example, the relation of type containment between instances of type
node to instances of type myclass1 is a valid relationship definition.

<Valid-Links>
 <Valid-Link>
 <Class-Ref class-name="containment">
 <End1 class-name="node">
 <End2 class-name="myclass1">
 <Valid-Link-Qualifiers>
 </Valid-Link>
</Valid-Links>

3. Define an Adapter Configuration

a. Navigate toAdapter Management.

b. Click theCreate new resource button and select New Adapter.

c. In the New adapter dialog box, select Integration and Java Adapter.

d. Right-click the adapter that you created and select Edit Adapter Source from the shortcut
menu.

e. Edit the following XML tags:

<pattern xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

id="newAdapterIdName"

xsi:noNamespaceSchemaLocation="../../Patterns.xsd"

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 200 of 503

description="Adapter Description" schemaVersion="9.0"

displayName="New Adapter Display Name">

<deletable>true</deletable>

<discoveredClasses>

<discoveredClass>link</discoveredClass>

<discoveredClass>object</discoveredClass>

</discoveredClasses>

<taskInfo

className="com.hp.ucmdb.discovery.probe.services.dynamic.core.

AdapterService">

<params

className="com.hp.ucmdb.discovery.probe.services.dynamic.core.

AdapterServiceParams" enableAging="true"

enableDebugging="false" enableRecording=

"false" autoDeleteOnErrors="success" recordResult="false"

maxThreads="1" patternType="java_adapter"

maxThreadRuntime="25200000">

<className>com.yourCompany.adapter.MyAdapter.MyAdapterClass

</className>

</params>

<destinationInfo

className="com.hp.ucmdb.discovery.probe.tasks.BaseDestinationDa

ta">

<!-- check -->

<destinationData name="adapterId"

description="">${ADAPTER.adapter_id}</destinationData>

<destinationData name="attributeValues"

description="">${SOURCE.attribute_values}</destinationData>

<destinationData name="credentialsId"

description="">${SOURCE.credentials_id}</destinationData>

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 201 of 503

<destinationData name="destinationId"

description="">${SOURCE.destination_id}</destinationData>

</destinationInfo>

<resultMechanism isEnabled="true">

<autoDeleteCITs isEnabled="true">

<CIT>link</CIT>

<CIT>object</CIT>

</autoDeleteCITs>

</resultMechanism>

</taskInfo>

<adapterInfo>

<adapter-capabilities>

<support-federated-query>

<!--<supported-classes/> <!—see the section about supported

classes-->

<topology>

<pattern-topology /> <!—or <one-node-topology> -->

</topology>

</support-federated-query>

<!--<support-replicatioin-data>

<source>

<changes-source/>

</source>

<target/>

</adapter-capabilities>

<default-mapping-engine />

<queries />

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 202 of 503

<removedAttributes />

<full-population-days-interval>-1</full-population-days-

interval>

</adapterInfo>

<inputClass>destination_config</inputClass>

<protocols />

<parameters>

<!--The description attribute may be written in simple text or

HTML.-->

<!--The host attribute is treated as a special case by UCMDB-->

<!--and will automatically select the probe name (if possible)-

->

<!--according to this attribute’s value.-->

<parameter name="credentialsId" description="Special type of

property, handled by UCMDB for credentials menu" type="integer"

display-name="Credentials ID" mandatory="true" order-index="12"

/>

<parameter name="host" description="The host name or IP address

of the remote machine" type="string" display-name="Hostname/IP"

mandatory="false" order-index="10" />

<parameter name="port" description="The remote machine's

connection port" type="integer" display-name="Port"

mandatory="false" order-index="11" />

</parameters>

<parameter name="myatt" description="is my att true?"

type="string" display-name="My Att" mandatory="false" order-

index="15" valid-values=”True;False”/>True</parameters>

<collectDiscoveredByInfo>true</collectDiscoveredByInfo>

<integration isEnabled="true">

<category >My Category</category>

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 203 of 503

</integration>

<overrideDomain>${SOURCE.probe_name}</overrideDomain>

<inputTQL>

<resource:XmlResourceWrapper

xmlns:resource="http://www.hp.com/ucmdb/1-0-

0/ResourceDefinition" xmlns:ns4="http://www.hp.com/ucmdb/1-0-

0/ViewDefinition" xmlns:tql="http://www.hp.com/ucmdb/1-0-

0/TopologyQueryLanguage">

<resource xsi:type="tql:Query" group-id="2" priority="low" is-

live="true" owner="Input TQL" name="Input TQL">

<tql:node class="adapter_config" id="-11" name="ADAPTER" />

<tql:node class="destination_config" id="-10" name="SOURCE" />

<tql:link to="ADAPTER" from="SOURCE" class="fcmdb_conf_

aggregation" id="-12" name="fcmdb_conf_aggregation" />

</resource>

</resource:XmlResourceWrapper>

</inputTQL>

<permissions />

</pattern>

For details about the XML tags, see "XMLConfiguration Tags and Properties" on page 208.

4. Define Supported Classes

Define supported classes either in the adapter code by implementing the getSupportedClasses()
method, or by using the pattern XML file.

<supported-classes>
 <supported-class name="HistoryChange" is-derived="false" is-
reconciliation-supported="false" federation-not-supported="false" is-id-
reconciliation-supported="false">
 <supported-conditions>
 <attribute-operators attribute-name="change_create_time">
 <operator>GREATER</operator>
 <operator>LESS</operator>

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 204 of 503

 <operator>GREATER_OR_EQUAL</operator>
 <operator>LESS_OR_EQUAL</operator>
 <operator>CHANGED_DURING</operator>
 </attribute-operators>
 </supported-conditions>
</supported-class>

name The name of the CI type

is-derived Specifies whether this definition includes all inheriting children

is-
reconciliation-
supported

Specifies whether this class is used for reconciliation

is-id-
reconciliation-
supported

Specifies whether this class is used for id-reconciliation

federation-not-
supported

Specifies whether this CIT should not be allowed for federation (blocking
certain CITs, for example, a CIT defined solely for federation)

<supported-
conditions>

Specifies the supported conditions on each attribute

5. Implement the Adapter

Select the correct adapter implementation class according to its defined capabilities. The adapter
implementation class implements the appropriate interfaces according to defined capabilities.

If the adapter implements getTopologyWithReconciliationData and adapter capabilities include
the ability to be used as a starting point, the adapter should also support requesting topology with
reconciliation data without any conditions (only type). In this case the adapter should return full
reconciliation data of the found results.

Adapter reconciliation support can be defined according to global_id, in which case global_id
must be defined as part of the reconciliation attributes in the adapter supported classes. If adapter
reconciliation support is defined according to global_id, then
getTopologyWithReconciliationData() should return the global_id as part of the reconciliation
object properties. The UCMDB uses global_id for reconciliation of federation results for a CIT
instead of the identification rule.

Part of the federation API is the DataAdapterEnvironment interface. This interface represents the
environment of the data adapter. It contains the environment API needed for the adapter to work.
For more information on the DataAdapterEnvironment interface, see "The
DataAdapterEnvironment Interface" on page 210.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 205 of 503

6. Define Reconciliation Rules or Implement the Mapping Engine

If your adapter supports federated TQL queries, you have two options for defining your Mapping
Engine:

o Use the default mapping engine, which uses the CMDB's internal reconciliation rules for
mapping. To use it, leave the <default-mapping-engine> XML tag empty.

o Write your ownmapping engine by implementing themapping engine interface and placing the
JAR with the rest of the adapter code. To do this, use the following XML tag: <default-
mapping-engine>com.yourcompany.map.MyMappingEngine</default-mapping-
engine>

7. Add Jars Required for Implementation to the Class Path

To implement your classes, add the federation_api.jar file to your code editor class path.

8. Deploy the Adapter

Deploy the adapter package. For general details on deploying a package, see PackageManager in
theUniversal CMDB Administration Guide.

The package should contain the following entities:

o New CIT definition (optional):

o Used only if the adapter supports new CI types that do not yet exist in UCMDB.

o The new CIT definitions are located in the class folder in the package.

o New data type definition (optional):

o Used only if the new CITs require new data types.

o The new data type definitions are located in the typedef folder in the package.

o New valid relationships definition (optional):

o Used only if the adapter supports the federated TQL.

o The new valid relationships definitions are located in the validlinks folder in the package.

o The pattern configuration XML file should be located in the discoveryPatterns folder in the
package.

o Descriptor. Defines the package definitions.

o Place your compiled classes (normally a jar file) in the package under the

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 206 of 503

adapterCode\<adapter id> folder.

Note: The adapter id folder name has the same value as in the adapter configuration.

o If you create your own configuration file, you should place the file in the package under the
adapterCode\<adapter id> folder.

9. Update the Adapter

Changes to any of the adapter's non-binary files may bemade in the Adapter Management
module. Making changes to configuration files in the Adapter management module causes the
adapter to reload with the new configurations.

Updates may also bemade by editing the files in the package (both binary and non-binary files),
and then redeploying the package by using the PackageManager. For details, see "How to Deploy
a Package" in theUniversal CMDB Administration Guide.

Create a Sample Adapter
This example illustrates how to create a sample adapter. This task includes the following steps:

l "Select Adapter Logic" below

l "Load the Project" on the next page

1. Select Adapter Logic

When you implement an adapter, youmust choose how to handle the condition logic in the
implementation (property conditions, ID conditions, reconciliation conditions, and link conditions).

a. Retrieve the entire data into the adapter memory and let it select or filter the needed CI
Instances.

b. Convert all the conditions into the data source language and let it filter and select the data. For
example:

l Convert the condition into a SQL query.

l Convert the condition into a Java API filter object.

c. Filter some of the data on the remote service, and have the adapter select and filter the
remainder.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 207 of 503

In theMyAdapter example, the logic in option a is used.

2. Load the Project

Copy the files from theC:\hp\UCMDB\UCMDBServer\tools\
adapter-dev-kit\SampleAdapters folder and follow the instructions in the readme files.

Note: If you use an adapter with large data sets, youmay need to use caching and indexing
to improve performance for Federation.

Online javadocs documentation is available at:

C:\hp\UCMDB\UCMDBServer\deploy\ucmdb-docs\docs\eng\APIs\DBAdapterFramework_
JavaAPI\index.html

XML Configuration Tags and Properties

id="newAdapterIdName" Defines the adapter's real name. Used for
logs and folder lookups.

displayName="New Adapter Display Name" Defines the adapter's display name, as it
appears in the UI.

<className>...</className> Defines the adapter's interface implementing
the Java class.

<category >My Category</category> Defines the adapter's category.

<parameters> Defines the properties for the configuration
that are available in the UI when setting up a
new integration point.

name The name of the property (usedmostly by
code).

description The display hint of the property.

type String or integer (use valid values with string
for Boolean).

display-name The name of the property in the UI.

mandatory Specifies whether this configuration property
is mandatory for the user.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 208 of 503

order-index The placing order of the property (small = up).

valid-values A list of possible valid values separated by `;'
characters (for example, valid-
values="Oracle;SQLServer;MySQL" or valid-
values="True;False").

<adapterInfo> Contains the definition of the adapter's static
settings and capabilities.

<support-federated-query> Defines this adapter as capable of federation.

<start-point-adapter> Specifies that this adapter is the start point
for TQL query calculation.

<one-node-topology> The ability to federated queries with one
federated query node.

<pattern-topology> The ability to federate complex queries.

<support-replicatioin-data> Defines the capability to run data push and
population flows.

<source> This adapter may be used for population
flows.

<push-back-ids> Push back the global ID of the CI to the
global_id column of the table (must be defined
in the orm.xml). The behavior can be
overridden by implementing the
FcmdbPluginPushBackIds plug-in.

<changes-source> This adapter may be used for population
changes flows.

<instance-based-data> This tag defines that the adapter supports an
instance based population flow.

<target> This adapter may be used for data push
flows.

<default-mapping-engine> Allows defining amapping engine for the
adapter (by default, the adapter uses the
default mapping engine). For any other
mapping engine, enter the implementing
class name of themapping engine

<removedAttributes> Forces the removal of specific attributes from
the result.

<full-population-days-
interval>

Specifies when to execute a full population
job instead of a differential job (every `x'
days). Uses the agingmechanism together

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 209 of 503

with the changes flow.

<adapter-settings> The list of settings of the adapter.

<list.attributes.for.set> Determines which attributes override the
previous value (if one exists).

The DataAdapterEnvironment Interface

OutputStream openResourceForWriting(String

resourceName) throws FileNotFoundException;

This method opens a resource with a given name for writing. It is used for saving persistent data for the
integration. This method should be used instead of trying to load files using javamethods. The user
should ensure that the stream is closed when finished writing to the stream. close()/flush() will save the
resource. This method creates a runtime resource (it may not overwrite files that came in the adapter
package).

Parameter

l resourceName: The name of the resource to retrieve. This name should be unique across all
integrations of the same adapter.

Return Value

Returns a stream to which to write.

Exceptions

l This method throws the FileNotFoundException if the resource type is file and the file does not
exist, if the resource is a directory rather than a regular file, or for some other reason the resource
cannot be opened for reading.

l This method throws theSecurityException if a security manager exists and its checkReadmethod
denies access to the file.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 210 of 503

InputStream openResourceForReading(String

resourceName) throws FileNotFoundException;

This method opens a resource with a given name for reading. It is used for reading persistent data for
the integration. This method should be used instead of trying to load a file using javamethods.The user
should ensure that the stream is closed when finished reading it. It first attempts to load files that came
in the adapter package. If not found, it attempts to load a runtime created resource from
DataAdapterEnvironment.openResourceForWriting(String). The runtime resources can be viewed
using JMX (of the probe and server accordingly).

Parameter

l resourceName: The name of the resource to retrieve. This name should be unique across all
integrations of the same adapter.

Return Value

Returns a stream to read.

Exceptions

l This method throws the FileNotFoundException if the resource type is file and the file does not
exist, if the resource is a directory rather than a regular file, or for some other reason the resource
cannot be opened for reading.

l This method throws theSecurityException if a security manager exists and its checkReadmethod
denies read access to the file.

Properties openResourceAsProperties(String

propertiesFile) throws IOException;

This method opens a resource with a given name and loads it as aProperties structure. It is used for
reading persistent data for the integration. This method should be used instead of attempting to load the
.properties files using javamethods. It first attempts to load files that came in the adapter package. If
not found, it attempts to load a runtime created resource from
DataAdapterEnvironment.openResourceForWriting(String). The runtime resources can be viewed
using JMX (of the probe and server accordingly).

Parameter

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 211 of 503

l propertiesFile: The name of the resource to retrieve. This name should be unique across all
integrations of the same adapter.

Return Value

Returns the file content represented in Properties.

Exceptions

l This method throws the FileNotFoundException if the resource type is file and the file does not
exist, if the resource is a directory rather than a regular file, or for some other reason the resource
cannot be opened for reading.

l This method throws theSecurityException if a security manager exists and its checkReadmethod
denies read access to the file.

l This method throws the IOException if the properties file failed to convert to theProperties Object.

String openResourceAsString(String resourceName)

throws IOException;

This method opens a resource with a given name and loads it as a string. It is used for reading
persistent data for the integration. This method should be used instead of trying to load files using java
methods.

It first attempts to load files that came in the adapter package. If not found, it attempts to load a runtime
created resource from DataAdapterEnvironment.openResourceForWriting(String). The runtime
resources can be viewed using JMX (of the probe and server accordingly).

Parameter

l resourceName: The name of resource to retrieve. This name should be unique across all
integrations of the same adapter.

Return Value

Returns the file content represented in String format.

Exceptions

l This method throws the FileNotFoundException if the resource type is file and the file does not
exist, if the resource is a directory rather than a regular file, or for some other reason the resource

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 212 of 503

cannot be opened for reading.

l This method throws theSecurityException if a security manager exists and its checkReadmethod
denies read access to the file.

l This method throws the IOException if an I/O error occurs.

public void saveResourceFromString(String

relativeFileName, String value) throws IOException;

This method receives a String and saves it as a resource. It is used for saving persistent data for the
integration. This method should be used instead of trying to save files using javamethods. This method
converts the String into a stream and saves it to the resource. It creates a runtime resource, but cannot
overwrite files that came in the adapter package). The runtime resources can be viewed using JMX (of
the probe and server accordingly).

Parameter

l relativeFileName: The name of resource to retrieve. This name should be unique across all
integrations of the same adapter.

l value: The String to save as a resource

Exceptions

This method throws the IOException if an I/O error occurs.

boolean resourceExists(String resourceName);

This method checks if the given resource name exists. It looks for files that came in the adapter
package and for runtime created resources from DataAdapterEnvironment.openResourceForWriting
(String).

Parameter

l resourceName: The name of the resource to retrieve. This name should be unique across all
integrations of the same adapter.

Return Value

Returns True if resourceName exists.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 213 of 503

boolean deleteResource(String resourceName);

This method deletes the given resource from persistent data. It deletes a runtime resource, andmay
not delete files that came in the adapter package. The runtime resources can be viewed using JMX (for
the probe and server accordingly).

Parameter

l resourceName: The name of the resource to delete. This name should be unique across all
integrations of the same adapter.

Return Value

Returns True if the resource is successfully deleted.

Collection<String> listResourcesInPath(String path);

This method retrieves a list of resources in the given resource path. It looks for files that came in the
adapter package and for a runtime created resources from
DataAdapterEnvironment.openResourceForWriting(String). The runtime resources can be viewed
using JMX (for the probe and server accordingly).

Parameter

l path: The resource path. For example, "META-INF/myfiles/"

Return Value

Return a list of resources in the path.

DataAdapterLogger getLogger();

Retrieves the logger to be used by the adapter.This logger is used for logging events in your adapter.

Return Value

Returns the logger that is used by the DataAdapter.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 214 of 503

DestinationConfig getDestinationConfig();

This method retrieves the destination configuration of the integration. This configuration holds all
connection and running settings for the integration.

Return Value

Returns the DestinationConfig of the Adapter.

int getChunkSize();

This method retrieves the population chunk size requested for this integration.

Return Value

Returns the population chunk size.

int getPushChunkSize();

This method retrieves the push chunk size requested for this integration.

Return Value

Returns the push chunk size.

ClassModel getLocalClassModel();

This method retrieves a class model for querying information about the local UCMDB's class model.
This method brings an updated ClassModel. Once the ClassModel object is returned, it is not updated
for any class model changes. In order to retrieve an updated class model, use this method again to
retrieve it.

Return Value

Returns the UCMDB's class model.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 215 of 503

CustomerInformation getLocalCustomerInformation();

This method retrieves customer information for the customer that is executing the adapter.

Return Value

Returns customer information for the customer that is executing the adapter.

Object getSettingValue(String name);

This method retrieves a specific adapter setting.

Parameter

name: The name of setting.

Return Value

Returns the Object setting value.

Map<String, Object> getAllSettings();

This method retrieves all adapter settings.

Return Value

Returns the adapter settings.

boolean isMTEnabled();

This method checks if the server environment supports Multiple Tenancy (MT).

Return Value

Returns true if the server environment supports MT, otherwise returns false.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 216 of 503

String getUcmdbServerHostName();

This method returns the local UCMDB server host name.

Return Value

Returns the local UCMDB server host name.

Developer ReferenceGuide
Chapter 6: Developing Java Adapters

Micro Focus Universal CMDB (10.33) Page 217 of 503

Chapter 7: Developing Push Adapters
This chapter includes:

Developing and Deploying Push Adapters 218

Build an Adapter Package 219

CreateMappings 223

Write Jython Scripts 227

Support Differential Synchronization 231

Generic XML Push Adapter SQLQueries 233

Generic Web Service Push Adapter 233

Mapping File Reference 253

Mapping File Schema 256

Mapping Results Schema 264

Customization 267

Developing and Deploying Push Adapters
Generic Push Adapters provide a common platform that enables rapid development of integrations that
push UCMDB data to external data repositories (databases and third-party applications). Generic Push
Adapters are categorized according to the protocol used to push the data. For details on pushing via
XML, using the Generic XML Push Adapter, see "Generic XML Push Adapter SQLQueries" on
page 233. For details on pushing viaWeb Service, using the Generic Web Service Push Adapter, see
"Generic Web Service Push Adapter" on page 233.

Developing a custom integration based on aGeneric Push Adapter requires:

l Building a new adapter package from the appropriate Generic Push Adapter template files. For
details, see "Build an Adapter Package" on the next page.

l Mappings between the UCMDB CI link types and the external data items. Themappings are stored
as XML and are customized to each external data repository. For details, see "CreateMappings" on
page 223.

l A Jython script to push the data items into the external data repository. For details, see "Write
Jython Scripts" on page 227.

Micro Focus Universal CMDB (10.33) Page 218 of 503

l Additional adapter-specific steps. For example, choosing the path of the file to be written for the
XML push adapter, or creating a data receiver for theWeb Service push adapter.

Build an Adapter Package
To create a new, MDR-specific push adapter, you shouldmake a copy of the generic adapter and then
edit it to customize it as an adapter for a specific push target.

Generic adapters packages can be found in one of the following two locations:

l Generic XML push adapter: hp\UCMDB\UCMDBServer\content\adapters\push-adapter.zip

l Generic web service adapter: hp\UCMDB\UCMDBServer\content\adapters\web-service-push-
adapter.zip

To create a new push adapter from the generic push adapter:

1. Extract the content of the selected package zip file to a work folder.

2. Review the following directories in preparation for the rename and replace phase:

o adapterCode:Contains the directory that is deployed to the
C:\hp\UCMDB\UCMDBServer\runtime\fcmdb\CodeBase directory. Jars deployed here do
not automatically restart the probe and do not appear automatically in the probe’s
CLASSPATH.

o discoveryConfigFiles:Contains the adapter's mappings definitions and points to the correct
Jython script (push.properties)

o discoveryPatterns:Contains the adapter's XML definition that is deployed on the UCMDB
server

o discoveryScripts:Contains the adapter's Jython scripts via which the connection to the third
party data store is made and data is pushed

o discoveryResources:Contains theUCMDBDataReceiver.jar containing the Java integration
classes for the web service.

Note: When you deploy this package, the probe is restarted to include this .jar in the probe’s
CLASSPATH. No action is required beyond deploying the package.

3. Make the following changes within the unzipped adapter directory structure:

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 219 of 503

a. discoveryConfigFiles\<Your_Push_Adapter_Name>: rename the directory "PushAdapter"
or "XMLtoWebService" to the name of the new push adapter (for example, “myPushAdapter”).

b. discoveryConfigFiles\<Your_Push_Adapter_Name>\push.properties: In the
push.properties file, do the following:

l Update the name of jythonScript.name to the name of the Jython script to be used by the
new push adapter (for example, pushToMyService.py).

l Update the name of themappings file to be used by the new push adapter (for example,
myPushAdapter_mappings). Do no add the .xml extension, this is filled in automatically.

c. discoveryPatterns\<push adapter name>.xml:Rename this file to the name of the new
adapter's definition XML file (for example,my_push_adapter.xml).

d. discoveryPatterns\<your_push_adapter>.xml:Update this file as follows:

l For the XML element <pattern>: set the id and description attributes accordingly. For
example:

<pattern id="PushAdapter"
xsi:noNamespaceSchemaLocation="../../Patterns.xsd" description="Discovery
Pattern Description" schemaVersion="9.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

is changed to:

<pattern id="MyPushAdapter" displayLabel="My Push Adapter"
xsi:noNamespaceSchemaLocation="../../Patterns.xsd" description="Discovery
Pattern Description" schemaVersion="9.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

l For the XML element <parameters>: update the children elements according to the needs
of your adapter. By default, the following children elements are used to define a push
adapter. These values are assigned when the integration point is defined in the Integration
Studio after the adapter is configured. Update the parameter list so that the list of
parameters reflects the required connection attributes. Do not remove the probeName
attribute.

l host: the server name hosting the web service

l port: port of the listening UCMDB Data Receiver service

l Web Service Push Adapter: uri - the remainder of the URL to form the service
endpoint address of the data receiver.

l probeName: defines on which data flow probe the push job runs

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 220 of 503

l For the XML element <integration>: update the value of the child element <category> to
something other thanGeneric. By default integration adapters belonging to the Generic
category are not shown in the Integration Studio. If you are integrating with a third-party
data store, set this value to "Third Party". If you are integrating with an HPE BTO product,
set this value to "HPE BTOProducts".

e. adapterCode\PushAdapter: rename this folder with the adapter ID used in the previous step
(for example, adapterCode\MyPushAdapter).

f. discoveryScripts\<your_Jython_push_script>.py: create a file with the same name as the
one defined in the push.properties jythonScript.name property. In the discoveryScript file,
there is a script that inserts the CIs and links to an external Oracle database. Replace
discoveryScripts\pushScript.pywith the script you wrote (for details, see "Write Jython
Scripts" on page 227). If you rename the script, the jythonScript.name property in
adapterCode\<adapter ID>\push.properties should be updated accordingly.

l XMLPush Adapter: pushScript.py

l WebService Push Adapter: XMLtoWebService.py

g. tql\<your_integration_TQLs>: like a regular package, place the TQL XML definition of your
integration TQLs in this directory. All TQLs in this folder are deployed when the adapter
package is deployed.

h. discoveryConfigFiles\<Your_Push_Adapter_Name>\mappings: create an XMLmapping
file per TQL that you want to use in your integration. Note that the push adapter applies the
transformations in themapping file to the results of the integration TQLs and then sends that
data in three parameters (addResult, updateResult, and deleteResult) of an ad hoc task to
the data flow probe.

i. adapterCode\<adapter ID>\mappings: replace themappings.xml file with themapping
files you prepared (for details, see "CreateMappings" on page 223).

XML Push Adapter: This mapping example corresponds to the example of the tables created
in ORACLE in the sql_queries file.

To use amapping file for each TQLmethod, assign the name of the corresponding TQL to
each XML file, followed by .xml. In this case, themappings.xml file is used as by default, if
no specific mapping file is found for the current TQL name. The name of the default mapping
file can bemodified by changing themappingFile.default property in adapterCode\<adapter
ID>\push.properties.

4. After making all the above changes, create a .zip file by selecting the folders and files specified in
step 3 above (for example,my_Push_Adapter.zip).

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 221 of 503

5. Deploy the newly created .zip file on the UCMDB server via the PackageManager (go to
Administration > Package Manager).

6. Create an integration point inData Flow Management > Integration Studio and define the
integration TQLs that the integration point uses. Set a schedule for automatic data push.

Troubleshooting

The procedure for building a new push adapter requires complete and correct re-naming and replacing.
Any error will likely affect the adapter. The packagemust be unzipped and re-zipped correctly to act as
a UCMDB package. Refer to the out-of-the-box packages as examples. Common errors include:

l Including another directory on top of the package directories in the ZIP file.

Solution: ZIP the package in the same directory as the package directories such as
discoveryResources, adapterCode, etc. Do not include another directory level on top of this in the
ZIP file.

l Omitting a critical re-name of a directory, a file, or a string in a file.

Solution: Following the instructions in this section very carefully.

l Misspelling a critical re-name of a directory, a file, or string in a file.

Solution:Do not change your naming convention in mid-stream once you begin the re-naming
procedure. If you realize that you need to change the name, start over completely rather than trying
to retroactively correcting the name, as there is a high risk of error. Also, use search and replace
rather thanmanually replacing strings to reduce risk of errors.

l Deploying adapters with the same file names as other adapters, especially in the
discoveryResources and adapterCode directories.

Solution:Youmay be using a UCMDB version with a known issue that prevents mappings files
from having the same name as any other adapter in the sameUCMDB environment. If you attempt
to deploy a package with duplicates names, the package deployment will fail. This problemmay
occur even if these files are in different directories. Further, this problem can occur regardless of
whether the duplicates are within the package or with other previously deployed packages.

At this point you can create a new push adapter job in the Integration Studio using the new adapter you
just deployed.

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 222 of 503

TQL Best Practices for Push Adapters

1. Create a folder structure in the TQL and View trees, and keep all new TQLs and views there. Use
a naming convention.

2. Unless the TQL is small, first copy themost similar TQL.

3. Make one change at a time. Save, test, and preview after each change. Repeat until the results
comply with your requirements.

Create Mappings
The raw TQL result data is in the form of the UCMDB class model schema. It is likely that the
consumer uses a different datamodel. The push adapter provides amappingmechanism to transform
the data into a format more suitable for consumption. Mappings perform both direct and complex
transformations, from direct, naming-type conversion, to parent/child aggregation and referencing
functions.

Themapping specification can be found in the section "Mapping File Reference" on page 253. Use the
reference to create amapping file.

Note: The adapter properties file refers to the name of themapping file. In adapter configuration
files, the adapter implements a folder structure using the name of the adapter. Rename this folder
when implementing an adapter to maintain uniqueness as required by the PackageManager.

Build a Mapping File

1. Start with a default mapping file.

2. Deploy the adapter and run it once.

3. Observe the results.

4. Identify and note what should be changed.

5. Make the changes identified in the previous step. The following list can help serve as a guide for
the order of the changes.

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 223 of 503

a. Start with the top, non-transformative section. Make sure the adapter runs after each change.

b. Change the source CIs section to the UCMDB names in the TQL result.

c. First map the keys.

d. Then add all the direct mappings.

e. Add the complex mappings.

f. Add the link mappings.

Repeat steps 2-5 until themapped data is suitable for consumption. Select the appropriate Generic
adapter package from which to create the new push adapter.

Themapping files work the sameway for all types of push adapters. TheGeneric XML push adapter
writes themapped results to a file. TheGeneric Web Service Push Adapter sends the XML results to a
data receiver. For more details, see "Generic Web Service Push Adapter" on page 233.

Prepare the Mapping Files

Note: You can retrieve all of the CIs and relationships as they are in the CMDB without mapping,
by not creating themappings.xml file. This returns all of the CIs and relationships with all of their
attributes.

There are two different ways to preparemapping files:

l You can prepare a single, global mapping file.

All mappings are placed in a single file namedmappings.xml.

l You can prepare a separate file for each push query.

Eachmapping file is called <query name>.xml.

For details, see "Mapping File Schema" on page 256.

This task includes the following steps:

l "Create amappings.xml File" on the next page

l "Map CIs" on the next page

l "Map Links" on page 226

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 224 of 503

1. Create a mappings.xml File

Themapping file structure is created as follows (use an existing file as a template):

<?xml version="1.0" encoding="UTF-8"?>
<integration>
 <info>
 <source name="UCMDB" versions="9.x" vendor="HP" >
 <!-- for example: -->
 <target name="Oracle" versions="11g" vendor="Oracle" >
 </info>
 <targetcis>
 <!--- CI Mappings --->
 </targetcis>
 <targetrelations>
 <!--- Link Mappings --->
 </ targetrelations>
</integration>

2. Map CIs

There are two ways tomapCMDB CI types:

o Map aCI type so that CIs of that type and all inherited types aremapped in the sameway:

<source_ci_type_tree name="node" mode="update_else_insert">
 <apioutputseq>1</apioutputseq>
 <target_ci_type name="host">
 <targetprimarykey>
 <pkey>name</pkey>
 </targetprimarykey
 <target_attribute name=" name" datatype="STRING">
 <map type="direct" source_attribute="name" >
 </target_attribute>
 <!-- more target attributes --->
 </target_ci_type>
</source_ci_type_tree>

o Map aCI type so that only CIs of that type are processed. CIs of inherited types are not
processed unless their type is alsomapped (in one of the two ways):

<source_ci_type name="node" mode="update_else_insert">
 <apioutputseq>1</apioutputseq>
 <target_ci_type name="host">
 <targetprimarykey>

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 225 of 503

 <pkey>name</pkey>
 </targetprimarykey
 <target_attribute name=" name" datatype="STRING">
 <map type="direct" source_attribute="name" >
 </target_attribute>
 <!-- more target attributes --->
 </target_ci_type>
</source_ci_type>

A CI type which is mapped indirectly (one of its ancestors is mapped using source_ci_type_tree),
can also override its parent's map by having it appear in its own source_ci_type_tree or source_
ci_type.

It is recommended to use source_ci_type_treewherever possible. Otherwise, resulting CIs of a
CI type that do not appear in themapping files will not be transferred to the Jython script.

3. Map Links

There are two ways tomap links:

o Map a link so that links of that type and all inherited links aremapped in the sameway:

<source_link_type_tree name="dependency" target_link_type="dependency"
mode="update_else_insert" source_ci_type_end1="webservice" source_ci_
type_end2="sap_gateway">
 <target_ci_type_end1 name="webservice" >
 <target_ci_type_end2 name="sap_gateway" >
 <target_attribute name="name" datatype="STRING">
 <map type="direct" source_attribute="name" >
 </target_attribute>
</source_link_type_tree>

o Map a link so that only links of that type are processed. Links of inherited types are not
processed unless their type is alsomapped (in one of the two ways):

<link source_link_type="dependency" target_link_type="dependency"
mode="update_else_insert" source_ci_type_end1="webservice" source_ci_
type_end2="sap_gateway">
 <target_ci_type_end1 name="webservice" >
 <target_ci_type_end2 name="sap_gateway" >
 <target_attribute name="name" datatype="STRING">
 <map type="direct" source_attribute="name" >
 </target_attribute>
</link>

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 226 of 503

Write Jython Scripts
Themapping script is a regular Jython script, and should follow the rules for Jython scripts. For details,
see "Developing Jython Adapters" on page 46.

The script should contain theDiscoveryMain function, whichmay return either an empty OSHVResult
or aDataPushResults instance upon success.

To report any failure, the script should raise an exception, for example:

raise Exception('Failed to insert to remote UCMDB using TopologyUpdateService. See
log of the remote UCMDB')

In the DiscoveryMain function, the data items to be pushed to or deleted from the external application
can be obtained as follows:

get add/update/delete result objects (in XML format) from the Framework
addResult = Framework.getTriggerCIData('addResult')
updateResult = Framework.getTriggerCIData('updateResult')
deleteResult = Framework.getTriggerCIData('deleteResult')

The client object to the external application can be obtained as follows:

oracleClient = Framework.createClient()

This client object automatically uses the credentials ID, host name and port number passed by the
adapter through the Framework.

If you need to use the connection parameters that you defined for the adapter (for details, see the step
on editing the discoveryPatterns\push_adapter.xml file in "Build an Adapter Package" on page 219),
use the following code:

propValue = str(Framework.getDestinationAttribute('<Connection Property Name'))

For example:

serverName = Framework.getDestinationAttribute('ip_address')

This section also includes:

l "Working with theMapping's Results" on the next page

l "Handling Test Connection in the Script" on page 231

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 227 of 503

Working with the Mapping's Results

Generic push adapters create XML strings that describe the data to be added, updated, or deleted from
the target system. The Jython script needs to analyze this XML, and then performs the add, update, or
delete operation on the target.

In the XML of the add operation that the Jython script receives, the mamId attribute for the objects and
links is always the UCMDB identifier of the original object or link before its type, attribute, or other
information was changed to the schema of the remote system.

In the XML of the update or remove operations, the mamId attribute of each object or link contains the
string representation of the same ExternalId that was returned from the Jython script from the
previous synchronization.

In the XML, the id attribute of a CI holds the cmdbId as an external id or the ExternalId of that CI if the
CI got an ExternalId one when the CI was sent to the script. The end1Id and end2Id fields of the link
hold for each of the link's ends the cmdbId as an external id or the ExternalId of that link’s end if the CI
at the link’s end got an ExternalIdwhen it was sent to the script.

When processing the CIs in the Jython script, the return value of the script is amapping between the
CI's CMDB id and the given id (the id given to each CI in the script). If a CI is pushed for the first time,
the id that is in the XML of that CI is the CMDB id. If a CI is not pushed for the first time, the CI’s id is
the same id that was given to that CI in the script when it was first pushed.

The id is retrieved from the CI XML script as follows:

1. From the CI Element in the XML, retrieve the id from the id attribute. For example: id =
objectElement.getAttributeValue('id').

2. After retrieving the id from the XML, restore the id from the attribute (string). For example:
objectId = CmdbObjectID.Factory.restoreObjectID(id).

3. Check if the objectId received in the previous step is the CMDB id. You can do this by checking
if the objectId has the new id that is given to it by the script. If it does, the returned id is not the
CMDB id. For example:
newId = objectId.getPropertyValue(<the name of the id attribute which is given
by the script>).

If newId is null, then the id that was returned in the XML is a CMDB id.

4. If the id is a CMDB id (that is, newId is null), perform the following (if the id is not a CMDB id, go to
step 5):

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 228 of 503

a. Create a property for that CI that holds the new id. For example: propArray =
[TypesFactory.createProperty('<the name of the id attribute which is given
by the script>', '<new id>')].

b. Create an externalId to that CI. For example:
cmdbId = extI.getPropertyValue('internal_id')
className = extI.getType()
externalId = ExternalIdFactory.createExternalCiId(className, propArray)

c. Map the CMDB id to the newly created externalId (and in the next step return that mapping
to the adapter). For example: objectMappings.put(cmdbId, externalId)

d. When all of the CIs and links aremapped:
updateResult = DataPushResultsFactory.createDataPushResults(objectMappings,
linkMappings);
return updateResult

5. If the id is the new id (that is, newId is not null), then the externalId is the newId.

It is also possible to report on the push status for each CI and link as follows:

1. updateStatus = ReplicationActionDataFactory.createUpdateStatus();

where updateStatus is an instance of the UpdateStatus class that contains statuses of the CIs
and links.

2. Add a status to updateStatus by calling the reportCIStatus or reportRelationStatus
method.

For example:

status = ReplicationActionDataFactory.createStatus(Severity.FAILURE, 'Failed',
ERROR_CODE_CI, errorParams,Action.ADD);

updateStatus.reportCIStatus(externalId, status);

Where ERROR_CODE_CI is the number of the error messages as they appear in adapter
properties.errors file (for details on the properties.errors file, see "Error-Writing Conventions"
on page 76), and errorParams contains the parameters to pass to themessage. See
ReplicationActionDataFactory javadoc for more details.

3. Create a push result with the statuses as follows:

updateResult = DataPushResultsFactory.createDataPushResults(objectMappings,
linkMappings, updateStatus);

return updateResult

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 229 of 503

Example of the XML result

<root>

<data>

<objects>

<Object mode="update_else_insert" name="UCMDB_UNIX" operation="add"
mamId="0c82f591bc3a584121b0b85efd90b174"
id="HiddenRmiDataSource%0Aunix%0A1%0Ainternal_
id%3DSTRING%3D0c82f591bc3a584121b0b85efd90b174%0A">

<field name="NAME" key="false" datatype="char" length="255">UNIX5</field>

<field name="DATA_NOTE" key="false" datatype="char" length="255"></field>

</Object>

</objects>

<links>

<link targetRelationshipClass="TALK" targetParent="unix" targetChild="unix"
operation="add" mode="update_else_insert"
mamId="265e985c6ec51a8543f461b30fa58f81"
id="end1id%5BHiddenRmiDataSource%0Aunix%0A1%0Ainternal_
id%3DSTRING%3D41372a1cbcaba27b214b84a2ec9eb535%0A%5D%0Aend2id%
5BHiddenRmiDataSource%0Aunix%0A1%0Ainternal_
id%3DSTRING%3D0c82f591bc3a584121b0b85efd90b174%0A%5D%0AHiddenRmi
DataSource%0Atalk%0A1%0Ainternal_
id%3DSTRING%3D265e985c6ec51a8543f461b30fa58f81%0A">

<field name="DiscoveryID1">41372a1cbcaba27b214b84a2ec9eb535</field>

<field name="DiscoveryID2">0c82f591bc3a584121b0b85efd90b174</field>

<field name="end1Id">HiddenRmiDataSource%0Aunix%0A1%0Ainternal_
id%3DSTRING%3D41372a1cbcaba27b214b84a2ec9eb535%0A</field>

<field name="end2Id">HiddenRmiDataSource%0Aunix%0A1%0Ainternal_
id%3DSTRING%3D0c82f591bc3a584121b0b85efd90b174%0A</field>

<field name="NAME" key="false" datatype="char" length="255">TALK4</field>

<field name="DATA_NOTE" key="false" datatype="char" length="255"></field>

</link>

</links>

</data>

</root>

Note: If datatype="BYTE", the returned result's value is aString that is generated as: new

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 230 of 503

String([the byte array attribute]). The byte[] object can be reconstructed by: <the
received String>.getBytes(). If there are differences in the default locale between the server
and the probe, the reconstruction is performed according to the server's default locale.

Handling Test Connection in the Script

A Jython script can be invoked to test the connection with an external application. In this case, the
testConnection destination attribute will be true. This attribute can be obtained from the Framework
as follows:

testConnection = Framework.getTriggerCIData('testConnection')

When run in test connectionmode, a script should raise an exception if a connection to the external
application cannot be established. Otherwise, if the connection is successful, theDiscoveryMain
function should return an empty OSHVResult.

Support Differential Synchronization
For the Push adapter to support differential synchronization, theDiscoveryMain functionmust return
an object implementing theDataPushResults interface, which contains themappings between the IDs
that the Jython script receives from the XML and the IDs that the Jython script creates on the remote
machine. The latter IDs are of the typeExternalId.

TheExternalIdUtil.restoreExternal command, which receives the ID of the CI in the CMDB as a
parameter, restores the external ID from the ID of the CI in the CMDB. This command can be used, for
example, while performing differential synchronization, and a link is received where one of its ends is
not in the bulk (it was already synchronized).

If theDiscoveryMainmethod in the Jython script on which the Push adapter is based returns an empty
ObjectStateHolderVector instance, the adapter will not support differential synchronization. This
means that even when a differential synchronization job is run, in actuality, a full synchronization is
being performed. Therefore, no data can be updated or removed on the remote system, since all data is
added to the CMDB during each synchronization.

Important: If you are implementing differential synchronization on an existing adapter that was
created in version 9.00 or 9.01, youmust use the push-adapter.zip file from version 9.02 or later to
recreate your adapter package. For details, see "Build an Adapter Package" on page 219.

This task enables the Push adapter to perform differential synchronization.

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 231 of 503

The Jython script returns theDataPushResults object which contains two Javamaps - one for object
ID mappings (keys and values are ExternalCiId type objects) and one for link IDs (keys and values are
ExternalRelationId type objects).

l Add the following from statements to your Jython script:

from com.hp.ucmdb.federationspi.data.query.types import ExternalIdFactory

from com.hp.ucmdb.adapters.push import DataPushResults

from com.hp.ucmdb.adapters.push import DataPushResultsFactory

from com.mercury.topaz.cmdb.server.fcmdb.spi.data.query.types import
ExternalIdUtil

l Use theDataPushResultsFactory factory class to obtain theDataPushResults object from the
DiscoveryMain function.

Create the UpdateResult object

updateResult = DataPushResultsFactory.createDataPushResults(objectMappings,
linkMappings);

l Use the following commands to create Javamaps for theDataPushResults object:

#Prepare the maps to store the mappings if IDs

objectMappings = HashMap()

linkMappings = HashMap()

l Use theExternalIdFactory class to create the following ExternalId IDs:

o ExternalId for objects or links originating in a CMDB (for example, all of the CIs in an add
operation are from the CMDB):

externaCIlId = ExternalIdFactory.createExternalCmdbCiId(ciType, ciIDAsString)

externalRelationId = ExternalIdFactory.createExternalCmdbRelationId(linkType,
end1ExternalCIId,
end2ExternalCIId, linkIDAsString)

o ExternalId for objects or links not originating in a CMDB (usually, every update and remove
operation contains such objects):

myIDField = TypesFactory.createProperty("systemID", "1")

myExternalId = ExternalIdFactory.createExternalCiId(type, myIDField)

Note: If the Jython script updated existing information and the ID of the object (or link)
changes, youmust return amapping between the previous external ID and the new one.

l Use the restoreCmdbCiIDString or restoreCmdbRelationIDStringmethods from the

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 232 of 503

ExternalIdFactory class to retrieve the UCMDB ID string from an External ID of an object or link
that originated in UCMDB.

l Use the restoreExternalCiId and restoreExternalRelationIdmethods from theExternalIdUtil
class to restore theExternalId object from themamId attribute value of the XML of the update or
remove operations.

Note: ExternalId objects are actually an array of properties. This means that you can use an
ExternalId object to store any information youmay need that will identify the data on the
remote system.

Generic XML Push Adapter SQL Queries
In the adapter package, the sql_queries file located in adapterCode > PushAdapter >
sqlTablesCreation, contains the queries needed to create tables in a new schema in Oracle for testing
the adapter. The tables correspond to the adapterCode\<adapter ID>\mappings\mappings.xml file.

Note: The sql_queries file is not needed for the adapter. It is only an example.

Generic Web Service Push Adapter
The generic web service push adapter provides a UCMDB-initiated push of SOAP messages
containing query data to a web service data receiver. Themapped results are sent in standard SOAP
messages via the HTTP POST protocol to the data receiver. The data receiver must understand the
SOAP messages produced by the push adapter. To facilitate the development of the proper data
receiver, aWSDL is provided with this push adapter.

Custom processing of the SOAP message response XML is possible in the Jython script.

To understand the format of the incomingmapped data, the developer of the data receiver should
communicate with the developer of themappings file. An .xsd is currently not provided with this version
of the web service push adapter, so datamust be processed in a way reflective of the incoming data,
which is a combination of the original TQL and the appliedmappings.

The web service push adapter functions for pushing data to the client are shown below. The items in
green are customized or supplied by the client to implement the adapter for a specific push target. The
items in blue are out-of-the-box components.

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 233 of 503

An example of an implementation of the generic web service push adapter to anMDR-specific push
adapter using an Enterprise Service Bus (ESB) is shown here:

WSDL

AWSDL is supplied to the client developer to create a data receiver capable of communicating with the
UCMDB push adapter via a web service. TheUCMDBDataReceiver.wsdl describes the SOAP
messages that are used to communicate data from UCMDB to the data receiver. The design diagram
from theWSDL is shown here:

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 234 of 503

The data receiver (which is in practice a server or “service endpoint" in SOAP terminology) should
implement threemethods: addData, deleteData, and updateData, corresponding to the data sets that
the UCMDB pushes. The HTTP headers contain the correct SoapAction keyword that indicates the
type of data that is being sent. The data receiver is responsible for implementing the business logic and
processing the data.

The default WSDLURL is:

l http://localhost:8080/UCMDBDataReceiver/services/UCMDBDataReceiver?wsdl

As implemented by the Data Receiver, the URL could look similar to the following:

l http://testWSPAserver:4444/MyCo.IT.SvcMgt.ws.us:provider/UCMDBDataReceiver?wsdl

The URL of the web service is the same as theWSDLURLwithout the “?wsdl” at the end.

The source for theWSDL is included below:

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://ucmdb.hp.com"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://ucmdb.hp.com" xmlns:intf="http://ucmdb.hp.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!--WSDL created by Apache Axis version: 1.4 Built on Apr 22, 2006 (06:55:48
PDT)-->

<wsdl:types>

<schema elementFormDefault="qualified"
targetNamespace="http://ucmdb.hp.com"
xmlns="http://www.w3.org/2001/XMLSchema">

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 235 of 503

<element name="addData">

<complexType>

<sequence>

<element name="xmlAdded" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="addDataResponse">

<complexType/>

</element>

<element name="deleteData">

<complexType>

<sequence>

<element name="xmlDeleted" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="deleteDataResponse">

<complexType/>

</element>

<element name="updateData">

<complexType>

<sequence>

<element name="xmlUpdate" type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="updateDataResponse">

<complexType/>

</element>

</schema>

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 236 of 503

</wsdl:types>

<wsdl:message name="addDataRequest">

<wsdl:part element="impl:addData" name="parameters">

</wsdl:part>

</wsdl:message>

<wsdl:message name="deleteDataResponse">

<wsdl:part element="impl:deleteDataResponse" name="parameters">

</wsdl:part>

</wsdl:message>

<wsdl:message name="updateDataResponse">

<wsdl:part element="impl:updateDataResponse" name="parameters">

</wsdl:part>

</wsdl:message>

<wsdl:message name="deleteDataRequest">

<wsdl:part element="impl:deleteData" name="parameters">

</wsdl:part>

</wsdl:message>

<wsdl:message name="addDataResponse">

<wsdl:part element="impl:addDataResponse" name="parameters">

</wsdl:part>

</wsdl:message>

<wsdl:message name="updateDataRequest">

<wsdl:part element="impl:updateData" name="parameters">

</wsdl:part>

</wsdl:message>

<wsdl:portType name="UCMDBDataReceiver">

<wsdl:operation name="addData">

<wsdlsoap:operation soapAction="addDataRequest"/>

<wsdl:input message="impl:addDataRequest" name="addDataRequest">

</wsdl:input>

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 237 of 503

<wsdl:output message="impl:addDataResponse" name="addDataResponse">

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="deleteData">

<wsdlsoap:operation soapAction="deleteDataRequest"/>

<wsdl:input message="impl:deleteDataRequest"
name="deleteDataRequest">

</wsdl:input>

<wsdl:output message="impl:deleteDataResponse"
name="deleteDataResponse">

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="updateData">

<wsdlsoap:operation soapAction="updateDataRequest"/>

<wsdl:input message="impl:updateDataRequest"
name="updateDataRequest">

</wsdl:input>

<wsdl:output message="impl:updateDataResponse"
name="updateDataResponse">

</wsdl:output>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="UCMDBDataReceiverSoapBinding"
type="impl:UCMDBDataReceiver">

<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name="addData">

<wsdl:input name="addDataRequest">

<wsdlsoap:body use="literal" />

</wsdl:input>

<wsdl:output name="addDataResponse">

<wsdlsoap:body use="literal" />

</wsdl:output>

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 238 of 503

</wsdl:operation>

<wsdl:operation name="deleteData">

<wsdl:input name="deleteDataRequest">

<wsdlsoap:body use="literal" />

</wsdl:input>

<wsdl:output name="deleteDataResponse">

<wsdlsoap:body use="literal" />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="updateData">

<wsdl:input name="updateDataRequest">

<wsdlsoap:body use="literal" />

</wsdl:input>

<wsdl:output name="updateDataResponse">

<wsdlsoap:body use="literal" />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="UCMDBDataReceiverService">

<wsdl:port binding="impl:UCMDBDataReceiverSoapBinding"
name="UCMDBDataReceiver">

<wsdlsoap:address
location="http://localhost:8080/UCMDBDataReceiver/services/
UCMDBDataReceiver"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

Response Handling

The data receiver should return a string in the addDataResponse, deleteDataResponse, or
updateDataResponse structures. The adapter passes the response data unprocessed to the probe’s

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 239 of 503

probeMgr-adaptersDebug.log. The receiver can return any string data, and the responses are
wrapped in SOAP-compliant XML. In the Jython script you can use theSOAPMessage and related
Java classes to parse the responsemessages. The following is an example of a responsemessage
from the data receiver:

<2012-03-16 15:47:38,080> [INFO] [Thread-110] - XMLtoWebService.py:addData
received response:

<soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<intf:addDataResponse xmlns:intf="http://ucmdb.hp.com">

<xml><result><status>error</status>
<message>Error publishing config item changes</message>
</result></xml>

</intf:addDataResponse>

</soapenv:Body>

Themessage shown is an error message <Error publishing config item changes>, but the content
can be anything that the data receiver is designed to respond with. The response is an error message
simply because that is the intent, because the designer says it is an error message and the push
adapter expects the response to be some indication of success or failure. The content can be
reconciliation IDs of all the successfully added CIs, or error messages for specific CIs. Customization
of the GWSPA could include parsing the responsemessage and taking actions such as resending
certain CIs or performing other logging.

Testing the WSDL

The SOAPUI Eclipse plug-in is used to test web service layers during development. You can use
SOAPUI to assist with customization of a web service. SOAPUI offers an integrated development
environment (IDE) to test building, sending, and receiving of SOAP messages. In the SOAPUI
perspective, theWSDL on pages 235-239 generated the following samplemessage:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ucm="http://ucmdb.hp.com">

<soapenv:Header/>

<soapenv:Body>

<ucm:addData>

<ucm:xmlAdded>?</ucm:xmlAdded>

</ucm:addData>

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 240 of 503

</soapenv:Body>

</soapenv:Envelope>

The “?” in the xmlAdded element above is the location of the data, which is supplied by the web
service push adapter integration.

Observing Results

When the push adapter is operating normally, in non-debugmode, the data is never written to a file until
the final result is written (the intermediate TQL results andmapped data results are not normally visible
in any log file). However, the results can be written to the probe’s debug file by un-commenting the
logger.debug statements (remove the “#” character) in the DiscoveryMain section as shown here:

Ensure the logger statement begins on the same column as the other preceding and following lines.
Jython is indent-sensitive and the script will fail if the indention of all lines is not correct.

The debug log file probeMgr-adaptersDebug.log on the probe here shows the contents of the output:

<2011-12-07 14:02:23,019> [INFO] [Thread-273] - XMLtoWebService.py started

<2011-12-07 14:02:23,019> [DEBUG] [Thread-273] - ESB Push parameters:

<2011-12-07 14:02:23,019> [DEBUG] [Thread-273] - Wshost=harpy.trtc.com

<2011-12-07 14:02:23,019> [DEBUG] [Thread-273] - WShostport=5555

<2011-12-07 14:02:23,019> [DEBUG] [Thread-273] -
WSuri=ws/DtITServiceManagement.esla.v1.ws.provider:UMDBDataReceiver

<2011-12-07 14:02:23,019> [INFO] [Thread-273] - URL is
http://harpy.trtc.com:5555/ws/DtITServiceManagement.esla.v1.ws.
provider:UMDBDataReceiver

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 241 of 503

<2011-12-07 14:02:23,035> [DEBUG] [Thread-273] - Connected to
http://harpy.trtc.com:5555/ws/DtITServiceManagement.esla.v1.ws.
provider:UMDBDataReceiver

<2011-12-07 14:02:23,035> [ERROR] [Thread-273] - sending results

<2011-12-07 14:02:23,035> [DEBUG] [Thread-273] - <?xml version="1.0"
encoding="UTF-8"?>

<root>

<data>

<objects>

<Object mode="" name="u_imp_ip_switch" operation="add"
mamId="9e8c2f6bdfe4b7d0864c79e70833902c">

<field name="Correlation ID" key="true" datatype="char"
length="">9e8c2f6bdfe4b7d0864c79e70833902c</field>

<field name="name" key="false" datatype="char" length="">nma_
09sw</field>

<field name="location" key="false" datatype="char" length="" />

<field name="u_chassis_vendor_type" key="false" datatype="char"
length="">ciscoCat2960-24TT</field>

<field name="serial_number" key="false" datatype="char"
length="" />

<field name="ram" key="false" datatype="char" length="" />

<field name="os_version" key="false" datatype="char" length=""
/>

</Object>

Modifying the Jython Script

XMLtoWebService.py

The Jython script used by theWeb Service push adapter is very similar to the XML push adapter. The
script uses UCMDBDataReceiver.jar, included with the adapter. The script implements the
SendDataToReceiver()method. SendDataToReceiver() uses three parameters:

1. Action (add, update, or delete)

2. The URL of the Data Receiver

3. The data

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 242 of 503

For example, the add block looks like: SendDataToReceiver(“add”, URL, addResult)

All web service and SOAP layers are wrapped. The URL is the service endpoint address of the
UCMDB data receiver. This is the sameURL used to obtain the wsdl via the “?wsdl” suffix.

The source of the Jython script is shown below. The web service integration wrapper lines are
highlighted in green.

####################################

script: XMLtoWebService.py

####################################

This jython script accepts TQL data results (adds, updates, and deletes) from
the Integration adapter.

and sends it to a web service. The web service is called UCMDBDataReceiver.

A web service client of this name must be addressable at the URL provided by
the parameters.

The SendDataToReceiver.jar exposes the SendDataToReceiver function, as well as
the service locator.

examples of the service locator are in the testconnection section.

regular expressions

import re

logging

import logger

web service interface

from com.hp.ucmdb import SendDataToReceiver

from com.hp.ucmdb.SendDataToReceiver import locateService

from com.hp.ucmdb.SendDataToReceiver import SendData

##

######## VARIABLES ##########

##

SCRIPT_NAME = "XMLtoWebService.py"

logger.info(SCRIPT_NAME+" started")

def cleanUp(str):

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 243 of 503

replace mode=""

str = re.sub("mode=\"\w+\"\s+", "", str)

replace mamId with id

str = re.sub("\smamId=\"", " id=\"", str)

replace empty attributes

str = re.sub("[\n|\s|\r]*<field name=\"\w+\" datatype=\"\w+\" />", "", str)

replace targetRelationshipClass with name

str = re.sub("\stargetRelationshipClass=\"", " name=\"", str)

replace Object with object with name

str = re.sub("<Object mode=\"", "<object mode=\"", str)

str = re.sub("<Object operation=\"", "<object operation=\"", str)

str = re.sub("<Object name=\"", "<object name=\"", str)

str = re.sub("</Object>", "</object>", str)

replace field to attribute

str = re.sub("<field name=\"", "<attribute name=\"", str)

str = re.sub("</field>", "</attribute>", str)

#logger.debug("String = %s" % str)

#logger.debug("cleaned up")

return str

def isEmpty(xml, type = ""):

objectsEmpty = 0

linksEmpty = 0

m = re.findall("<objects />", xml)

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 244 of 503

if m:

#logger.warn("\t[%s] No objects found" % type)

objectsEmpty = 1

m = re.findall("<links />", xml)

if m:

#logger.warn("\t[%s] No links found" % type)

linksEmpty = 1

if objectsEmpty and linksEmpty:

return 1

return 0

##

######## MAIN ##########

##

def DiscoveryMain(Framework):

#fix this for web service export

errMsg = "UCMDBDataReceiver Service not found."

testConnection = Framework.getTriggerCIData("testConnection")

Get Web Service Push variables

WShostName = Framework.getTriggerCIData("Host Name")

WShostport = Framework.getTriggerCIData("Protocol Port")

WSuri = Framework.getTriggerCIData("URI")

logger.info(SCRIPT_NAME+":ESB Push parameters:")

logger.info("Host Name="+WShostName)

logger.info("Protocol Port="+WShostport)

logger.info("URI="+WSuri)

URL = "http://"+WShostName+":"+WShostport+"/"+WSuri

logger.info("URL="+URL)

if testConnection == 'true':

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 245 of 503

locate the service

test_receiver = SendDataToReceiver()

locator = test_receiver.locateService(URL)

#locator = locateService(URL)

if(locator):

logger.info(SCRIPT_NAME+":Test connection was successful")

return

else:

raise Exception, errMsg

return

do same thing here if not just a test connection -

receiver = SendDataToReceiver()

locator = receiver.locateService(URL)

if(locator):

logger.info(SCRIPT_NAME+":Connected to "+URL)

else:

logger.error(SCRIPT_NAME+":no locator")

raise Exception, errMsg

return

get add/update/delete result objects from the Framework

addResult = Framework.getTriggerCIData('addResult')

updateResult = Framework.getTriggerCIData('updateResult')

deleteResult = Framework.getTriggerCIData('deleteResult')

logger.debug(deleteResult)

get referenced data - unused in this adapter implementation

#addRefResult = Framework.getTriggerCIData('referencedAddResult')

#updateRefResult = Framework.getTriggerCIData('referencedUpdateResult')

#deleteRefResult = Framework.getTriggerCIData('referencedDeleteResult')

uncomment out the logger statements to see the data

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 246 of 503

empty = isEmpty(addResult, "addResult")

if not empty:

addResult = cleanUp(addResult)

send to ESB web service

logger.info(SCRIPT_NAME+":sending addData Result")

rcvr = SendDataToReceiver()

resp = rcvr.SendData("add", URL, addResult)

logger.info(SCRIPT_NAME+":addData received response:"+resp)

#logger.debug(addResult)

empty = isEmpty(updateResult, "updateResult")

if not empty:

updateResult = cleanUp(updateResult)

send to ESB web service

#logger.debug(updateResult)

logger.info(SCRIPT_NAME+":sending updateData Result")

rcvr = SendDataToReceiver()

resp = rcvr.SendData("update", URL, updateResult)

logger.info(SCRIPT_NAME+":received response:"+resp)

empty = isEmpty(deleteResult, "deleteResult")

if not empty:

deleteResult = cleanUp(deleteResult)

send to ESB web service

#logger.debug(deleteResult)

logger.info(SCRIPT_NAME+":sending deleteData Result")

rcvr = SendDataToReceiver()

resp = rcvr.SendData("delete", URL, deleteResult)

logger.info(SCRIPT_NAME+":received response:"+resp)

logger.info(SCRIPT_NAME+" ended")

Customizing Response Message Processing

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 247 of 503

The data receiver should return a string containing any response or status desired. The web service
push adapter passes by default the response to the probe’s info-level log. The responsemessage is
SOAP-formatted XML containing the returned response string(s) inside. Any data can be returned by
the receiver such as grouped or individual error or success messages. If additional processing is
desired, the response can be processed by the adapter’s Jython script. No Java programming is
required.

An example of a return responsemessage, sent using the following:

// stub example for building your own UCMDBDataData Receiver

public class UCMDBDataReceiver {

public String addData (String xmlAdd){

System.out.println(xmlAdd); // do something with the data

// send back a response message based on what you did

String tr = new String("a test response from addData!");

return tr;

}

is shown here:

<soapenv:Body xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<addDataResponse xmlns="http://ucmdb.hp.com">

<addDataReturn>a test response from addData!</addDataReturn>

</addDataResponse>

</soapenv:Body>

Modifying the Data Receiver

A Java client can implement the classes contained inUCMDBDataReceiver.jar and call the web
service in the samemanner as Jython. In addition, the unwrappedmethods may also be called. A
Javadoc exists for theUCMDBDataReceiver.jar classes. The source code below shows how to use
these essential methods to wrap the data in a SOAP message and send it to the receiver over HTTP.

The process is to create aUCMDBDataReceiverServiceLocator object, then assign the
UCMDBDataReceiverEndPointAddress to the URL of the data receiver.

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 248 of 503

To send data, the locator’s getUCMDBDataReceivermethod is called to create a
UCMDBDataReceiver object. TheUCMDBDataReceiver object implements themethods to actually
send the add/change/delete data. There are three identical code blocks to process each type of
request.

The source code for theSendDataToReceiver class is listed below. Highlighted objects and
methods are the essential elements to use.

/**

* Test SendData for the UCMDB Data Receiver for the UCMDB Web Service Push
Adapter

*/

package com.hp.ucmdb;

import com.hp.ucmdb.SendDataToReceiver;

/**

* TestSendData can be used to verify the SOAP classes are working.

* TestSendData creates a SendDataToReceiver class and invokes its SendData
method.

* a response String is returned.

* The test URL is typically appended with "?wsdl" to get the WSDL of the
service.

*/

public class TestSendData {

/**

* @param args - test SOAP message.

* optional arguments [0] a test string [1] a service endpoint URL of a
Data Receiver.

* the default URL is sent the incoming argument as a test message.

* the default URL is
"http://localhost:8080/UCMDBDataReceiver/services/UCMDBDataReceiver".

* If any errors are encountered, TestClient will attempt to throw
exceptions.

*/

public static void main(String[] args) {

// use test message if supplied, otherwise supply a default test string

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 249 of 503

String teststring = new String("Test SOAP message from
UCMDBDataReceiver TestSendData.");

if(args.length > 0) {

teststring = args[0];

}

// use test URL if supplied, otherwise supply the default URL

String URL = new String("");

if(args.length > 1) {

URL = args[1];

}

// return response

String response = new String("");

// perform the tests

try {

if(URL.equals("")) {

UCMDBDataReceiverServiceLocator locator = new
UCMDBDataReceiverServiceLocator();

UCMDBDataReceiver receiver = locator.getUCMDBDataReceiver();

URL = locator.getUCMDBDataReceiverAddress();

System.out.println("TestClient: tested
URL="+locator.getUCMDBDataReceiverAddress());

System.out.println("TestClient: receiver="+receiver.toString
());

}

SendDataToReceiver sdtr = new SendDataToReceiver();

// this sends a test push and gets a response message

response = sdtr.SendData("add", URL, args[0]);

System.out.println("Response received was:"+response);

} catch (Exception e) {

System.out.println("TestClient: Remote Error:");

e.printStackTrace();

}

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 250 of 503

}

}

Source code is also included in theUCMDBDataReceiver.jar file for the other classes:

l TestClient.java

l UCMDBDataReceiver.java

l UCMDBDataReceiverProxy.java

l UCMDBDataReceiverService.java

l UCMDBDataReceiverServiceLocator.java

l UCMDBDataReceiverSoapBindingStub.java

The source was generated in the Eclipse IDE, thenmodified. Exercise caution whenmodifying the
UCMDB code, as much of it is auto-generated tomatch the SOAP specification and the UCMDB data
receiver.

Javadoc

A fully-commented javadoc is provided with the generic web service push adapter. The javadoc is
included in the docs folder javadoc. Start with index.html. The overview page provides access to the
documentation for all classes andmethods in the SDK.

All Classes

l SendDataToReceiver:API for the web service wrapper

l TestClient: test client to verify connectivity to an service endpoint

l UCMDBDataReceiver:web service wrapper

The rest are automatically generated by the web service builder:

l UCMDBDataReceiverProxy

l UCMDBDataReceiverService

l UCMDBDataReceiverServiceLocator

l UCMDBDataReceiverSoapBindingStub

Overview

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 251 of 503

Basic usage of the SDK, including source code examples, is explained in the documentation in the
package. This javadoc is for the UCMDB web service push adapter. The API may be called from
Jython or Java.

The SDK provides two source samples, TestClient andSendDataToReceiver. TestClient provides a
very limited test of the responding local client. SendDataToReceiver is themain class used to send
data to a web service.

First, use this SDK (mainly the enclosedWSDL) to implement a UCMDB data receiver to
communicate with this web service. Then use this SDK to create a push adapter in the UCMDB to
push UCMDB TQL result data to the data receiver. Basic usage of this API is described below, with
both Jython and Java implementations.

Implementing SendDataToReceiver()

SendDataToReceiver()wraps all functions with a single method:

l Jython: SendDataToReceiver("add",yourURL,"Hello!")

l Java: SendDataToReceiver("add",yourURL,"Hello!");

Or, create aSendDataToReceiver object (for example, to manipulate other settings) and then call the
SendDatamethod separately, as shown here:

l Jython:

rcvr = SendDataToReceiver()

responseMsg = rcvr.SendData(“add”, yourURL, “Hello!”)

l Java:

SendDataToReceiver rcvr = new SendDataToReceiver();

String responseMsg = rcvr.SendData(“add”, yourURL, “Hello!”);

Or, if you need to do it a step at a time, you can do the following:

1. Create a new UCMDBDataReceiverServiceLocator() object x, then set the object's endpoint
address later, shown here:

o Jython:

x = UCMDBDataReceiverServiceLocator()

x.setUCMDBDataReceiverEndPointAddress(URL)

o Java :

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 252 of 503

UCMDBDataReceiverServiceLocator x = new UCMDBDataReceiverServiceLocator();

x. setUCMDBDataReceiverEndPointAddress(URL);

2. Then, create a UCMDBDataReceiver with

o Jython: y = x.getUCMDBDataReceiver()

o Java: UCMDBDataReceiver y = x.getUCMDBDataReceiver();

3. Then, send the data via the SOAP web service like this:

o Jython:

l y.addData(yourData)

l or y.updateData(yourData)

l or y.deleteData(yourData)

o Java:

l y.addData(yourData);

l or y.updateData(yourData);

l or y.deleteData(yourData);

4. It may be necessary to test connectivity, then if successful reuse the same locator object to return
UCMDBDataReceiver to use for data transfer.

The classes contain no destructors and do not perform memory management.

Mapping File Reference

Using Mappings

A mappingmust be created for each target attribute in the transformed XML output. Themappings
specify where and how to obtain the data. If the data is in another corresponding attribute in UCMDB,
then a direct mapping is used.

To pull data frommultiple attributes, or attributes from the UCMDB CI’s child or parent CI’s attributes,
other complex mappings may be necessary. Themapping schema below shows all possible mappings.

Themapping file is an XML file which defines which CI/Relationship types in UCMDB aremapped to
which CI/Relationship types in the target data store. The format is explained in detail below. The

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 253 of 503

mapping file controls which CI and relationship types are pushed, as well as controlling exactly which
attributes are pushed.

A mapping entry exists for each attribute to be pushed to the target MDR. Eachmapping entry may
consist of one or more attributes in the raw UCMDB push data. Mapping entries allow completely
granular control of the final structure and naming of the data to be pushed to the target MDR.

Direct Mappings

Mappings transform one datamodel to another (in this case, the UCMDB to the push target MDR).
Transformations may be simple, in the case of a 1:1 relationship between the UCMDB attribute and the
target, they differ only by name and perhaps type.

Most attributemappings are direct. For example, the server name “ServerX”, may be represented in
UCMDB as a CI of type unixwith an attribute name of primary_server_name, of type stringwith a
length of 50. The target MDR’s datamodel may specify the same logical entity with a CI type of linux,
with an attribute name of hostnamewith a type of char[]with amaximum length of 250. Direct
mappings can accomplish all these aforementioned types of translation tasks.

Here is an example of a direct mapping:

<target_attribute name="dns_domain" datatype="char">

<map type="direct" source_attribute="domain_name" />

</target_attribute>

This direct mappingmaps the UCMDB attribute dns_domain to the domain_name attribute in the
target datamodel.

Use the char data type regardless of the actual data type, unless it is necessary to use the actual data
type.

Complex Mappings

More complex mappings enable additional transformations:

l Tomap attribute values frommultiple CIs to one target CI.

l Tomap attributes of children CIs (those having a container_f or contained relationship) to the
parent CI in the target data store. For example, setting a value calledNumber of CPUs on a target
Host CI. Another example could be setting the value Total Memory (by adding up thememory size
values of all memory CIs of a host CI in UCMDB) on a target Host CI.

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 254 of 503

l Tomap attributes of parent CIs (those having a container_f or contained relationship) on the target
data store’s CI. For example, setting a value calledContainer Server on a target attribute called
Installed SoftwareCI, by getting the value from the containing host of the software CI in UCMDB.

Below is an example of a complex mapping, using two source attributes separated by a comma
character, to create the target attribute os”:

<target_attribute name="os" datatype="char">

<map type="compoundstring">

<source_attribute name="discovered_os_name" />

<constant value="," />

<source_attribute name="host_osinstalltype" />

</map>

</target_attribute>

Reversing Link Directions

It is possible that the UCMDB contains data that differs in structure from source to source. For
example, the relationship between an IpAddress CI and an Interface CI may be a parent, as may occur
with theMicro Focus Network NodeManager integration. Or it may be a containment link as is
commonly created by Universal Discovery. Furthermore, the direction of these links are opposite to
each other.

It is currently not possible to reverse the direction of links in themappings file. Reversal of the _end1
and _end2 variables either switches the order of the data in the transformed XML or the link is missing
in the source data.

One possible solution to this problem is to define an Enrichment rule as follows:

1. The enrichment’s TQL part is a subset of a TQL that is used by the push adapter. This TQL in
particular selects all the links that are in the opposite direction of what is desired in the transformed
xml.

2. The enrichment part defines a new link of the correct direction and desired type.

3. Enrichment is activated and then creates the correct links.

4. The integration job TQL now refers to the enriched link rather than the original link.

5. The <link> mappings in the push adapter then refer to the enriched link as well and produce a set
of links consistent in type and direction.

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 255 of 503

Mapping File Schema

Element Name and
Path Description Attributes

integration Defines themapping
contents of the file.
Must be the outermost
block in the file except
for the beginning line
and any comments.

info

(integration)

Defines information
about the data
repositories being
integrated.

source

(integration > info)

Defines information
about the source data
repository.

1. Name: type
Description:Name of the source data
repository.
Is required?:Required
Type:String

2. Name: versions
Description:Version(s) of the source data
repositories.
Is required?:Required
Type:String

3. Name: vendor
Description:Vendor of the source data
repository.
Is required?:Required
Type:String

target

(integration > info)

Defines information
about the target data
repository.

1. Name: type
Description:Name of the source data
repository.
Is required?:Required
Type:String

2. Name: versions
Description:Version(s) of the source data
repository.
Is required?:Required
Type:String

3. Name: vendor

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 256 of 503

Element Name and
Path Description Attributes

Description:Vendor of the source data
repository.
Is required?:Required
Type:String

targetcis

(integration)

Container element for all
CIT mappings.

source_ci_type_tree

(integration > targetcis)

Defines a source CIT
and all of the CI types
which inherit from it.

1. Name: name
Description:Name of the source CIT.
Is required?:Required
Type:String

2. Name:mode
Description: The type of update required
for the current CI type.
Is required?:Required
Type:One of the following strings:
a. insert:Use this only if the CI does not
already exist.
b. update:Use this only if the CI is known
to exist.
c. update_else_insert: If the CI exists,
update it; otherwise, create a new CI.
d. ignore:Do nothing with this CI type.

source_ci_type

(integration > targetcis)

Defines a source CIT
without the CI types
which inherit from it.

1. Name: name
Description:Name of the source CIT.
Is required?:Required
Type:String

2. Name:mode
Description: The type of update required
for the current CI type.
Is required?:Required
Type:One of the following strings:
a. insert:Use this only if the CI does not
already exist.
b. update:Use this only if the CI is known
to exist.
c. update_else_insert: If the CI exists,
update it; otherwise, create a new CI.
d. ignore:Do nothing with this CI type.

target_ci_type

(integration > targetcis
>

Defines a target CIT. 1. Name: name
Description: Target CI type name.
Is required?:Required
Type:String

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 257 of 503

Element Name and
Path Description Attributes

source_ci_type

-OR-

integration > targetcis >
source_ci_type_tree)

2. Name: schema
Description: The name of the schema that
will be used to store this CI type at the
target.
Is required?:Not Required
Type:String

3. Name: namespace
Description: Indicates the namespace of
this CI type on the target.
Is required?:Not Required
Type:String

targetprimarykey

(integration > targetcis
> source_ci_type)

-OR-

(integration > targetcis
> source_ci_type_tree

-OR-

(integration >
targetrelations > link)

-OR-

(integration >
targetrelations >
source_link_type_tree)

Identifies target CIT
primary key attributes.

pkey

(integration > targetcis
> source_ci_type >
targetprimarykey

-OR-

integration > targetcis >
source_ci_type_tree >
targetprimarykey

-OR-

(integration >
targetrelations > link >
targetprimarykey)

Identifies one primary
key attribute.

Required only if mode is
update or
insert_else_update.

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 258 of 503

Element Name and
Path Description Attributes

-OR-

integration >
targetrelations >
source_link_type_tree
> targetprimarykey)

target_attribute

(integration > targetcis
> source_ci_type

-OR-

integration > targetcis >
source_ci_type_tree

-OR-

integration >
targetrelations > link

-OR-

integration >
targetrelations >
source_link_type_tree)

Defines the target CIT's
attribute.

1. Name: name
Description:Name of the target CIT's
attribute.
Is required?:Required
Type:String

2. Name: datatype
Description:Data type of the target CIT's
attribute.
Is required?:Required
Type:String

3. Name: length
Description: For string/char data types,
integer size of target attribute.
Is required?:Not Required
Type. Integer

4. Name. option
Description. The conversion function to be
applied to the value.
Is required. False
Type. One of the following strings:
a. uppercase – Convert to uppercase
b. lowercase – Convert to lowercase

If this attribute is empty, no conversion
function will be applied.

map

(integration >
targetcis > source_ci_
type >
target_attribute

 -OR-

integration >
targetcis >
source_ci_type_tree >
target_attribute)

Specifies how to obtain
the source CIT's
attribute value.

1. Name. type
Description. The type of mapping between
the source and target values.
Is required. Required
Type. One of the following strings:
a. direct – Specifies a 1-to-1mapping from
source attribute's value to target attribute's
value.
b. compoundstring –Sub-elements are
joined into a single string and the target
attribute value is set.
c. childattr – Sub-elements are one or more

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 259 of 503

Element Name and
Path Description Attributes

 -OR-

(integration >
targetrelations > link >
target_attribute

 -OR-

integration >
targetrelations >
source_link_type_tree
>
target_attribute)

child CIT's attributes. Child CITs are
defined as those with composition or
containment relationship.
d. constant – Static string

2. Name. value
Description. Constant string for
type=constant
Is required. Only required when
type=constant
Type. String

3. Name. attr
Description. Source attribute name for
type=direct
Is required. Only required when
type=direct
Type. String

aggregation

(integration >
targetcis >
source_ci_type >
target_attribute > map

 -OR-

integration >
targetcis > source_ci_
type_tree > target_
attribute > map

 -OR-

(integration >
targetrelations >
link > target_attribute >
map

 -OR-

integration >
targetrelations >
source_link_type_tree
> target_attribute >
map)

Only valid when the
map's type is childattr

Specifies how the
source CI's child CI
attribute values are
combined into a single
value tomap to the
target CI attribute.
Optional.

Name: type
Description. The type of aggregation function
Is required?:Required
Type. One of the following strings:

l csv – Concatenates all included values into
a comma-separated list (numeric or
string/character).

l count – Returns a numeric count of all
included values.

l sum –Returns the sum of all numeric
included values.

l average – Returns a numeric average of all
included values.

l min – Returns the lowest
numeric/character included value.

l max – Returns the highest
numeric/character included value.

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 260 of 503

Element Name and
Path Description Attributes

source_child_ci_type

(integration > targetcis
> source_ci_type >
target_attribute > map

-OR-

integration > targetcis >
source_ci_type_tree >
target_attribute > map

-OR-

(integration >
targetrelations > link >
target_attribute > map

-OR-

integration >
targetrelations >
source_link_type_tree
> target_attribute >
map)

Only valid when the
map’s type is childattr.

Specifies from which
connected CI the child
attribute is taken.

1. Name. name
Description. The type of the child CI
Is required. Required
Type. String

2. Name. source_attribute
Description. The attribute of the child CI
that is mapped.
Is required. Required only if the childAttr
aggregation type (which is on the same
path) is not =count.
Type. String

validation

(integration >
targetcis >
source_ci_type >
target_attribute > map

 -OR-

integration > targetcis >
source_ci_type_tree >
target_attribute > map

 -OR-

(integration >
targetrelations > link >
target_attribute > map

 -OR-

integration >
targetrelations >

Allows exclusion
filtering of the source
CI's child CIs based on
attribute values. Used
with the aggregation
sub-element to achieve
granularity of exactly
which children attributes
aremapped to the target
CIT's attribute value.
Optional.

1. Name.minlength
Description. Excludes strings shorter than
the given value.
Is Required?:Not required
Type. Integer

2. Name.maxlength
Description. Excludes strings longer than
the given value.
Is Required?:Not required
Type. Integer

3. Name.minvalue
Description. Excludes numbers smaller
than the specified value.
Is Required?:Not required
Type. Numeric

4. Name.maxvalue
Description. Excludes numbers greater
than the specified value.
Is Required?:Not required

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 261 of 503

Element Name and
Path Description Attributes

source_link_type_tree
>
target_attribute > map)

Only valid when the
map's type is childatt

Type. Numeric

targetrelations

(integration)

Container element for all
relationship mappings.
Optional.

source_link_type_tree

(integration >
targetrelations)

Maps a source
Relationship type
without the types which
inherit from it to a target
Relationship.
Mandatory only if
targetrelation is
present.

1. Name: name
Description. Source relationship name.
Is required?:Required
Type. String

2. Name: target_link_type
Description. Target relationship name
Is required?:Required
Type. String

3. Name: nameSpace
Description: The namespace for the link
that will be created on the target.
Is required?:Not required
Type:String

4. Name:mode
Description: The type of update required
for the current link.
Is required?:Required
Type:One of the following strings:

o insert – Use this only if the CI does not
already exist.

o update – Use this only if the CI is
known to exist.

o update_else_insert – If the CI exists,
update it; otherwise, create a new CI.

o ignore – Do nothing with this CI type.

5. Name: source_ci_type_end1
Description:Source relationship's End1 CI
type.
Is required?:Required
Type:String

6. Name: source_ci_type_end2

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 262 of 503

Element Name and
Path Description Attributes

Description:Source relationship's End2 CI
type.
Is required?:Required
Type:String

link

(integration >
targetrelations)

Maps a source
Relationship to a target
Relationship.
Mandatory only if
targetrelation is
present.

1. Name: source_link_type
Description:Source relationship name.
Is Required?:Required
Type:String

2. Name: target_link_type
Description: Target relationship name.
Is required?:Required
Type:String

3. Name: nameSpace
Description: The namespace for the link
that will be created on the target.
Is required?:Not required
Type:String

4. Name:mode
Description: The type of update required
for the current link.
Is required?:Required
Type:On the following strings:

o insert – Use this only if the CI does not
already exist.

o update – Use this only if the CI is known
to exist.

o update_else_insert – If the CI exists,
update it; otherwise, create a new CI.

o ignore – Do nothing with this CI type.

5. Name: source_ci_type_end1Description:
Source relationship's End1 CI type
Is required?:Required
Type:String

6. Name: source_ci_type_end2
Description:Source relationship's End2 CI
type
Is required?:Required
Type:String

target_ci_type_end1

(integration >

Target relationship’s
End1 CI type.

1. Name: name
Description:Name of the target

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 263 of 503

Element Name and
Path Description Attributes

targetrelations > link

-OR-

integration >
targetrelations >
source_link_type_tree)

relationship’s End1 CI type.
Is required?:Required
Type:String

2. Name: superclass
Description:Name of the End1 CI type’s
super-class.
Is required?:Not required
Type:String

target_ci_type_end2

(integration >
targetrelations > link

-OR-

integration >
targetrelations >
source_link_type_tree)

Target relationship’s
End2 CI type.

1. Name: name
Description:Name of the target
relationship’s End2 CI type.
Is required?:Required
Type:String

2. Name: superclass
Description:Name of the End2 CI type’s
super-class.
Is required?:Not required
Type:String

Mapping Results Schema

Element Name and
Path Description Attributes

root The root of the result
document.

data (root) The root of the data
itself.

objects (root > data) The root element for the
objects to update.

Object
(root > data > objects)

Describes the update
operation for a single
object and all of its
attributes.

1. Name: name
Description:Name of the CI type
Is required?:Required
Type:String

2. Name:mode
Description: The type of update required

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 264 of 503

Element Name and
Path Description Attributes

for the current CI type.
Is required?:Required
Type:One of the following strings:
a. insert – Use this only if the CI does not
already exist.
b. update – Use this only if the CI is
known to exist.
c. update_else_insert – If the CI exists,
update it; otherwise, create a new CI.
d. ignore – Do nothing with this CI type.

3. Name: operation
Description: The operation to perform
with this CI.
Is required:Required
Type:One of the following strings:
a. add – The CI should be added
b. update – The CI should be updated
c. delete – The CI should be deleted
If no value is set, then the default value of
add is used.

4. Name:mamId
Description: The ID of the object on the
source CMDB.
Is required?:Required
Type:String

field
(root > data > objects
> Object

-OR-

root > data > links >
link)

Describes the value of a
single field for an
object. The field’s text is
the new value in the
field, and if the field
contains a link, the
value is the ID of one of
the ends. Each end ID
appears as an object
(under <objects>).

1. Name: name
Description:Name of the field.
Is required?:Required
Type:String

2. Name: key
Description:Specifies whether this field
is a key for the object.
Is required?:Required
Type:Boolean

3. Name: datatype
Description: The type of the field.
Is required?:Required
Type:String

4. Name: length
Description: For string/character data
types, this is the integer size of the target
attribute.
Is required?:Not Required

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 265 of 503

Element Name and
Path Description Attributes

Type: Integer

links (root > data) The root element for the
links to update.

1. Name: targetRelationshipClass
Description: The name of the relationship
(link) in the target system.
Is required?:Required
Type:String

2. Name: targetParent
Description: The type of first end of the
link (parent).
Is required?:Required
Type:String

3. Name: targetChild
Description: The type of the second end
of the link (child).
Is required?:Required
Type:String

4. Name:mode
Description: The type of update required
for the current CI type.
Is required?:Required
Type:One of the following strings:
a. insert – Use this only if the CI does not
already exist.
b. update – Use this only if the CI is
known to exist.
c. update_else_insert – If the CI exists,
update it; otherwise, create a new CI.
d. ignore – Do nothing with this CI type.

5. Name: operation
Description: The operation to perform
with this CI.
Is required?:Required
Type:One of the following strings:
a. add – The CI should be added
b. update – The CI should be updated
c. delete – The CI should be deleted
If no value is set, then the default value of
add is used.

6. Name:mamId
Description: The ID of the object on the
source CMDB.
Is required?:Required
Type:String

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 266 of 503

Customization
This section explains some of the basic procedures for common types of customization for push
adapters.

Adding an Attribute

1. Ensure that the attribute is included in the TQL result.

2. Add the attributemapping to themappings file in the correct CI mapping section.

3. Ensure the data receiver is prepared to receive the additional attribute in the data.

Removing an Attribute

To remove an attribute, remove the attribute from themapping file.You should also remove the attribute
from the TQL if it is no longer used in the result or as a conditional node.

Adding a CI Type

1. Add the CI type to the TQL.

2. Ensure the CI type and it’s attribute data appear in the TQL result (use calculate and preview).

3. Add the CI type’s mapping in themappings file. Copy another CI type’s mappings to quickly
create a new CI type.

4. Modify the copied XML’s name and attributemappings to correspond to the new CI type and its
attributes. See "Mapping File Reference" on page 253 for the available types of mappings.

Removing a CI Type

1. Remove the CI Type from the TQL

2. Remove themapping section for that CI type in themappings file.

Adding Links

1. Ensure the two end CIs are present in the data.

2. Ensure the link you need to add is in fact a valid link (check in the CI typemanager).

3. Add the link elements in the relationships section of themappings xml.

Removing Links

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 267 of 503

1. Remove the link section of the link you want to remove in themappings file.

2. If possible, remove the link from the TQL (unless it affects the efficiency or function of the TQL).

Developer ReferenceGuide
Chapter 7: Developing Push Adapters

Micro Focus Universal CMDB (10.33) Page 268 of 503

Chapter 8: Developing Generic Adapters
This chapter includes:

Instance Sync 269

Achieving Data Push using the Generic Adapter 269

Achieving Data Population using the Generic Adapter 279

Achieving Data Federation using the Generic Adapter 295

Reconciliation 316

Generic Adapter API 316

Resource Locator APIs 316

Create aGeneric Adapter Package 317

Differences Between Push and PopulationMapping 323

How to Troubleshoot and Debug Using Generic Adapter Log Files 323

Adapters Using the Generic Adapter Framework 324

Generic Adapter XML SchemaReference 324

Instance Sync
The push and population Generic Adapter operations work with instance data. For more information
about the concepts of instance and root, see "Instance-Based Population Flow" on page 182 and
"Achieving Data Push using the Generic Adapter" below.

Achieving Data Push using the Generic Adapter
Data Push uses the existing EnhancedGeneric Push Adapter framework with minor XML schema
changes.

Note: TheGeneric Adapter works in instancemode (meaning it does not work with single CI
types, but with collections of CIs grouped together by amain root CI). For more information, see
"Instance-Based Population Flow" on page 182.

The XML schema changes needed to accommodate bidirectional mapping semantics are:

Micro Focus Universal CMDB (10.33) Page 269 of 503

l the <targetcis> tag has been renamed to <target_entities>.

l the <source_instance_type> tag has been renamed to <source_instance>.

l the <target_ci_type> tag has been renamed to <target_entity>.

l the <for-each-source-ci> tag thas been renamed to <for-each-source-entity>.

l the header versions attribute has been renamed to version and no longer requires a decimal.

This section provides information about pushing data using the Generic Adapter Framework:
PushOverview 270

TheMapping File 270

TheGroovy Traveler 273

Write Groovy Scripts 277

Implement PushAdapterConnector Interface 277

Push Overview

TheGeneric Adapter works on data structures that represent the TQL query result. Each adapter built
over the Generic Adapter Framework will handle this data structure and push it to its required target.

The data structure is namedResultTreeNode (RTN). The RTN is created according to themapping
file of the adapter and the results of the TQL query. The queries used for the Generic Adapter
Framework must be root based, that is the query must contain one query node with element name root,
or one or more relationship elements beginning with the prefix root. This CI or relationship serves as
the root element of the query. For details, see Data Push in theUniversal CMDB Data Flow
Management Guide.

There are two basic steps involved in developing enhanced push adapters:

1. Implementing the PushAdapterConnector interface – this interface receives the data to add,
update and delete as a list of RTNs, and perform the push into the target.

2. Creating themapping file – themapping file determines the creating of the RTN structure, by
mapping CIs and attributes of the TQL result.

The Mapping File

The following example demonstrates how to create themapping file.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 270 of 503

In this example, we will simulate a push of a node and an IP address. Wewill create a TQL query
called: Node Push, as follows:

In themapping file we create two target CI types: Computer and IP. Computer has one variable and
two attributes. IP has one attribute.

The following is themapping XML file:

The query results appear as follows:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 271 of 503

Here is the RTN list built according to this mapping file:

Each root instance is mapped separately using themapping file. Thus in this example, the
PushAdapterConnector receives a list of two RTN roots.

Note: The previous push adapter had the ability to create a general mapping for a CI type. The
new push adapter mapping is per TQL query. While running a push job that uses a query named x,

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 272 of 503

the adapter looks for the relevant mapping file (the one that has attribute: query-name=x).

You can calculate the values in themapping file using groovy script language. For details, see "The
Groovy Traveler" below.

The Groovy Traveler

Access the TQL query results in the followingmanner:

l Root[attr] returns the attribute attr of the Root element.

l Root.Query_Element_Name returns a list of the CI instances named in the TQLQuery_Element_
Name and that are linked to the current root CI.

l Root.Query_Element_Name[2][attr] returns the attribute attr of the third Query_Element_Name
that is linked to the current root CI.

l Root.Query_Element_Name*.getAt(attr) returns a list of the attributes attr of the CI instances
namedQuery_Element_Name in the TQL and that are linked to the current root CI.

There are additional attributes that can be accessed by the groovy traveler:

l cmdb_id – returns the UCMDB ID of the CI or relationship as a string.

l external_cmdb_id – returns the external ID of the CI or relationship as a string.

l Element_type – returns the element type of the CI or relationship as a string.

The import tag:

<import>

<scriptFile path="mappings.scripts.PushFunctions"/>

</import>

This means that we are declaring an import for all the groovy scripts in themapping file. In this
example, PushFunctions is a groovy script file that contains some static functions, and we can
access them during themapping (i.e. value=” PushFunctions.foo()”)

source_instance_type

Themapping is done per TQL, the query-name value is the related TQL of the current mapping. The ‘*’
means that this mapping file is associated with all TQL queries beginning with the prefix: Node Push.

<source_instance_type query-name="Node Push*" root-element-name="Root">

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 273 of 503

The source_instance_type tag designates the root element we aremapping.

root-element-name should be exactly the same as the name of the root in the TQL.

target_entity

This tag is used for the creation of the RTN.

The name attribute represents the target_entity name: name=Computer

The is-valid attribute is a Boolean value that is calculated during themapping, and determines if the
current target_ci is valid. Invalid target_entities are not added to the RTN. In this example, we do not
want to create a target_entity instance for which the root_iscandidatefordeletion attribute in UCMDB
is true.

The target_entity can have variables that are calculated during themapping:

<variable name="vSerialNo" datatype="STRING" value="Root['serial_number']"/>

The variable vSerialNo gets the value of the serial_number of the current root.

The attribute of the RTN is created by the target_mapping tag. The result of the execution of the
groovy script in the value field,is assigned to the RTN attribute.

<target_mapping name="SerialNo" datatype="STRING" value="vSerialNo"/>

SerialNo assigns the value of the variable vSerialNo.

It is possible to define a target_entity as child of another target_entity as follows:

<target_entity name="Portfolio">

<variable name="vSerialNo" datatype="STRING" value="Root['global_id']"/>

<target_mapping name="CMDBId" datatype="STRING" value="globalId"/>

<target_entity name=Asset">

<target_mapping name="SerialNo" datatype="STRING" value="vSerialNo"/>

</target_entity>

</target_entity>

The RTN Portfoliowill have child RTN namedAsset.

for-each-source-entity

This tag lists the specific CIs of the root instance. It has the following fields:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 274 of 503

l source-entities=" " – the list of CIs for which a target CI is created. This list is defined by the
groovy traveler in theRoot.IpAddress field.

l count-index=" " – a variable that holds the index of the CI in the current iteration of the loop.

l var-name=" " – the name of the CI in the current iteration of the loop.

Let’s modify our examplemapping file:

The RTN list that will build according to this mapping file will look like this:

dynamic_mapping

This tag adds the ability to create amapping of data from the target data store during the creation of the
RTN structure.

Example: Assume that the target is a database with a table namedComputer that has an id column
and a name column that is correlated toNode.name in UCMDB. Both columns are unique. The
database also has a table named IP that has a referenced key to the parentID in the Computer table.
The ‘dynamic_mapping’ can create amap that stores the name and id as <name,id>. Based on this
map, the Adapter canmatch ids with computers and can push the correct value to the parentID
attribute in the IP table. You can use this map to assign a value to the parentID attribute while creating
the RTN.

Themapping is determined by themap_property. The dynamic_mapping is executed once for each
chunk.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 275 of 503

<dynamic_mapping name="IdByName " keys-unique="true">

The name attribute represents the name of themap. The keys-unique attribute indicates if the keys
are unique (each key is mapped to one value, or to a set of values).

The name of themap in this example is IdByName and it has unique keys. In order to access themap
in the script, execute the following command:

DynamicMapHolder.getMap(‘IdByName’)

It returns a reference to that map.

Themap_property tag creates the property on which themapping is based.

Example:

<map_property property-name="SQLQuery" datatype="STRING"

property-value="SELECT name, id FROM Computer"/>

In this example the name of the property is SQLQuery and its value is an SQL statement that creates
themap. The implementation of themethods retrieveUniqueMapping and
retrieveNonUniqueMapping for the PushConnector interface will determine the actual content of the
returnedmap.

Global Variables

The following global variables are accessible to the groovy script in themapping file:

l Topology – Type: Topology. An instance of the topology of the current chunk.

l QueryDefinition - Type: QueryDefinition. An instance of the query definition of the current TQL.

l OutputCI – Type: ResultTreeNode. The RTN of the root element in the current treemapping.

l ClassModel – Type: ClassModel. An instance of the class model.

l CustomerInformation – Type: CustomerInformation. Information about the customer running the
job.

l Logger – Type: DataAdapterLogger. This logger is available in the adapter for writing logs to the
UCMDB logging framework.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 276 of 503

Write Groovy Scripts

In this section we create thePushFunctions.groovy file. This file will contain static functions that are
used during themapping of the root instance.

package mappings.scripts

public class PushFunctions {

public static boolean isVirtual(def nodeRole){
return isListContainsOne(def list, "MY_VM", "MY_SIMULATOR");

}

public static String getDescription(boolean isVirtual){
if(isVirtual){

return "This is a VM";
}
else{

return "This is physical machine";
}

}

private static boolean isListContainsOne(def list, ...stringList){
//returns true if the list contains one of the values.

}
}

Implement PushAdapterConnector Interface

The implementation should support the following basic steps:

public class PushExampleAdapter implements PushAdapterConnector

{

public UpdateResult pushTreeNodes(PushConnectorInput input) throws
DataAccessException{

// 1. build an UpdateResult instance - the UpdateResult is used to return

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 277 of 503

mappings between the sent ids to the actual ids that entered the data store.
// Also has an update status which allows to pass the status of data that was
actually pushed, detailed status reports on failed IDs, and actions actually
performed on successful ids.
// 2. handle the data:
// a. handle data to add. Can be retrieved by:
input.getResultTreeNodes.getDataToAdd();
// b. handle data to update.
// c. handle data to delete.
// 3. Return the Update result.

}

public void start(PushDataAdapterEnvironment env) throws DataAccessException{
// this method is called when the integration point created,

or when the adapter is reloaded
//(i.e after changing one of the mapping files
// and pressing ‘save’).

}

public void testConnection(PushDataAdapterEnvironment env) throws
DataAccessException {

// this method is called when pressing the 'test
connection' button in the

//creation of the integration point.
// For example if we push data to RDBMS this method

can create a connection
//to the database and will run a dummy SQL statement.
// If it fails it writes an error message to the log

and throws an exception.
}

Map<Object, Object> retrieveUniqueMapping(MappingQuery mappingQuery){
//This method will create the map according to the given mappingQuery. It will
be called in the
// mapping stage of the adapter execution, before the ‘UpdateResult
pushTreeNodes’ method.
// This method is called when the ‘keys-unique’ attribute of the ‘dynamic_
mapping’ tag is true.
}

Map<Object, Set<Object>> retrieveNonUniqueMapping(MappingQuery mappingQuery){
// This method is called when the ‘keys-unique’ attribute of the ‘dynamic_
mapping’ tag is false.
// In this case a key can be mapped to several values.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 278 of 503

}
}

Achieving Data Population using the Generic

Adapter
This section contains the following topics:

The Population Framework Architecture 279

Main Artifacts involved in Population 280

Population Adapter Modes 292

Explicit External ID Mapping 293

Global ID Pushback 294

The Population Framework Architecture

Themechanism is similar to that of the Push Adapter framework, meaning that a user of this Population
Adapter framework must provide amapping file and a connector implementation, and bundle them
together in a UCMDB adapter package.

The operation flow contains the following steps

1. The UCMDB user triggers the population operation from the UI.

2. The command is sent to the population adapter.

3. The population adapter calls the population connector and retrieves data in chunks.

4. The population adapter applies the definedmapping on data from each chunk and sends it forward
to the UCMDB Server.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 279 of 503

Main Artifacts involved in Population

Themain artifacts involved in population are:

l the TQL queries hat specify the data that will be populated in UCMDB

l the XMLmapping files that specify how the connector-returned data will bemapped to UCMDB

l required data

l the population connector responsible for retrieving the external system data and returning it to the
UCMDB Generic Adapter.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 280 of 503

Population TQL Queries

The role of a population TQL query is to indicate the data that will be populated in UCMDB. For
example, the TQL in the following figure is used to bring Node instances in UCMDB.

The population connector is responsible for understanding the population TQL queries and providing the
required data from the external system.

Population Mapping Files

The XMLmapping files have the same purpose as for push operations, except that the direction is
reversed. Thesemapping files describe how the data returned by the connector will bemapped to the
UCMDB data.

The information provided here is relevant for populationmapping and is not already mentioned for the
EnhancedGeneric Push Adapter.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 281 of 503

Following is an example of amapping for UCMDB Nodes and Running Software. The first image
shows the Nodes and Software Population TQL query. The second image displays the Nodes and
Software PopulationMapping.

This population job fetches data from an external system in the form of the ResultTreeNode (RTN) PC.
The ResultTreeNode API was introduced by the EnhancedGeneric Push Adapter and can be found in
the push-interfaces.jar file located in the UCMDB Server lib folder. For more information, see
"Achieving Data Push using the Generic Adapter" on page 269.

The PC RTN contains general node information in the form of attributes as well as an embedded
Programs entity that contains software type entities with the relevant attributes.

One PC instance will bemapped to 3 entities in UCMDB:

l a Node CI

l a Running Software CI

l a Composition link CI

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 282 of 503

Formore information about the format of the PC instance, see "Population Request Output" on
page 291.

The way in which connector data is mapped to UCMDB data is shown in the following figure:

Let’s analyze the key lines:

The source_instance definition states that we will bring entities into UCMDB and the UCMDB
topology that groups these entities is defined by the Nodes and Software Population TQL query. In
addition, the data structure returned by the connector that will be used to create the UCMDB data is a
ResultTreeNode namedPC.

The target_entity tag states that a new UCMDB entity starts here and this entity corresponds to the
RootLink element inside the Nodes and Software Population TQL query. This indication also includes
the UCMDB CI type of the new entity.

TheRootLink entity that will be created will have one attribute, name, whose value will be something
likeComputer_22 has MySQL Server.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 283 of 503

This samplemapping uses manual link population. We recommended using the automatic approach
described in "Automatic Link Population" below.

The Population type Attribute

Note that the Node entity has a type attribute. This type indicates the exact CI type that this entity will
have in UCMDB. The type attribute is not mandatory, because the entity’s default creation type is
obtained from the TQL element it refers to (in this case, Node). However, if we want to returnmultiple
instances of the UCMDB Node CI type and some of the instances areWindows while others are Unix,
we can use the type attribute to specify the exact UCMDB creation type. So in this case, we create a
getNodeType function inside theUtil function script file, which receives as input the PC tree and
returns the valid UCMDB CI type identifier (“unix” for Unix and “nt” forWindows).

Note: The target_entity type attribute is only available in the context of a Population flow, and its
valuemust be a valid Groovy expression.

We can describe the creation of the Software entity in the sameway.

Automatic Link Population

In themapping sample in "PopulationMapping Files", we saw what is needed to explicitly map a
populated link. A mapped target entity must be present for each TQL link element, such as the one
shown below:

Using the Generic Adapter automatic link populationmechanism, we no longer need tomap the TQL
link elements with mapping sections such as the one shown above. The framework will generate a link
CI instance of the type specified in the TQLwith empty properties. This operation will be performed for
all the links in the population TQL query.

The samplemapping results in a link CI of type composition being created that has as link ends (end1
and end2) the Node and Running Software CI instances.

You should useManual Link Population if the link you are populating requires:

l Dynamic link type (using the type attribute)

l Link properties

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 284 of 503

Manual Link Population

TheGeneric Adapter achieves the population of links by defining (mapping) the three entities required
by a link:

l the Link entity

l the Link’s End 1 entity

l the Link’s End 2 entity

Let’s analyze themapping example shown in "PopulationMapping Files" on page 281. In this case, we
are populating three entity types in UCMDB: Nodes, Running Software, and the Composition link
between them. Because wewant to populate a link (the link namedRootLink of type Composition), we
also need tomap the two link ends. Thus, from looking at the TQL query we see that the entities that
needmapping are Node (end 1) and Software (end 2). The way theGeneric Adapter framework
understands the link structure is by looking at the created entity’s element name and definition in the
TQL query. Because the population jobmust also bring instances of Node and Running Software, the
needed ends’ mapping is already in place.

Types of Link Population

There are two types of link population situations:

l Decomposing a complex external entity in multiple related UCMDB entities

In this case, a complex external entity such as PC is converted into the UCMDB Node and
Running Software types, which need to be linked by aComposition link. This type of link only
exists in the context of UCMDB.

l Links between complex external entities

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 285 of 503

In this case, we need tomodel a link between two complex external entities such as PCs.

The Population Connector

The population connector is responsible for retrieving external system data. This data is passed on to
the Generic Adapter in the established API format (ResultTreeNode), which is thenmapped to the
UCMDB data structures and inserted in UCMDB through the data-in process.

Similar to the push connector, the population connector can be implemented in both Java andGroovy
andmust implement the Population Connector Java Interface shown in the figure below.

To configure the population connector, add the following line in the adapter configuration XML file:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 286 of 503

The first method, populate, is themain connector method responsible for retrieving the data from the
external system. This method receives as input a population TQL query and returns the results in the
generic ResultTreeNode format. For more information, see "Achieving Data Push using the Generic
Adapter" on page 269. Along with themain business data, the connector also returns status and
chunking information.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 287 of 503

The secondmethod, getSupportedQueries, indicates the TQLs that are supported by the population
connector.

The third and fourth methods refer to more advanced use cases, pushing back the IDs of the populated
data and locating the relevant population resources within the adapter for a specific query. For more
information about these APIs, see the push-interfaces.jar file.

Population Request Input
A population request is defined by aQueryDefinition object that describes the UCMDB population
query. The population connector is responsible for reading this query object and translating it into the
external system’s query language.

In addition to the QueryDefinition object, there are:

l getResultTreeNodeStructure – Indicates the required structure that the population result must
return.

l getFlowType – Used to determine if the request to the connector is of type POPULATION or
FEDERATION.

getFromDate – Indicates the date from the last synchronization. If the date is null, then the FULL
POPULATION runs otherwise the Diff POPULATION runs (if the flow type is FEDERATION the
getFromDatemethod will always return null).

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 288 of 503

A sample population request is shown in the following figure:

In this example, the request contains theNodes Population query. We can see that the query
contains only one TQL element of typeNode.

ResultTreeNodeStructure

To implement yourPopulationAdapterConnector, youmust read the UCMDB Population TQL,
understand what UCMDB is asking for, and provide the results using external system entities. For
example, UCMDB may be asking for all Nodes related to Business Service instances in your external
system, and it might be that the external system equivalent for a computer is PC, which is related to a
Service entity. Thus, your population connector must return instances of PC connected to instances of
Service. In this case, themapping will look something like this:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 289 of 503

In this case, to return thePC instances related toService instances, we are returning aPC RTN that
contains Service as a child node. However, we could have chosen to create themapping in the format
of aService RTN with aPC child like this (rendering themapping invalid):

Thus, to aid the development of the population connector, the population request sent by the Generic
Adapter also includes the RTN structure of the data used in themapping file. This indicates to the
implementing connector the needed format of the returned RTN.

In the first case theResultTreeNodeStructure is:

PC
l name
Service
o name
o description

And in the second case theResultTreeNodeStructure is:

Service
l name
l description
PC
o name

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 290 of 503

Population Request Output
Upon processing a population request, the population connector must return a
PopulationConnectorOutput.

This output object contains:

l the queried data, in ResultTreeNode format

l status information (needed in case of failure)

l chunk information

A sample population response can be seen in the following figure:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 291 of 503

In the response above, the connector returned four data instances (corresponding to the UCMDB
Node), an empty status (signaling success) and a flag indicating that this is not the last chunk.

Population Adapter Modes

The UCMDB Adapter Framework allows two types of population adapters:

l Standard Population Adapter

o Is characterized by the absence of the <changes-source/> tag in the adapter XML file

o Will always bring the full query data from the external system. In this case, the UCMDB Probe
Framework is responsible for determining the difference between two consecutive runs. The
Probe Framework achieves this by comparing the previous result for the given query with the
current result, and computing the differences. Full population is achieved by not comparing the
current query result and treating it as the final result. This flow implies that the populated data is
not filtered by a “from date”, because filtering by a date would render data comparison
meaningless.

l changes-source Population Adapter

o Is configured by the use of the <changes-source/> tag in the adapter XML file:

o The changes-source adapter is responsible for computing the difference between two
consecutive runs.

Deleting CIs when using a changes-source adapter

If you are using a changes-source population adapter, your adapter is responsible for explicitly deleting
CIs. This is done by using the is-deleted mapping file XML attribute, which accepts a valid Groovy
expression.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 292 of 503

For example, in themapping file shown below, the population connector returns Service instances.
Although the instances are still valid, someCIs that were part of thoseService instances were
deleted. To signal the delete of those CIs, you need to use the is-deleted attribute on the
BusinessService mapping.

Explicit External ID Mapping

Theremay be situations where the populated data (CIs) will need to have a connector/adapter
controlledExternalId. Use the followingmapping construct to do this:

In this case, the Root CI is populated with an ExternalId that was created at the connector level and
placed on the Computer[‘external_id_obj’]. The creation of the ExternalId can also be done at the
mapping level using aGroovy script.

Note: Themechanism of explicitly creating an external ID overrides the target_entity type
attribute. Thus, when creating an external ID either with themapping script file or inside the
connector, the type attribute is ignored, and the final UCMDB type of the populated CI will be the
UCMDB type set in theExternalId object.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 293 of 503

Global ID Pushback

There are situations where populated CIs in UCMDB need to be kept in sync in the external system as
well. For this scenario, the Generic Adapter framework allows the enabling of pushback IDs. To use
this feature, a callback is performed for all the CIs that were populated in UCMDB, informing the
Population Adapter about the assigned global ID for each CI.

To enable this functionality, add the line that is marked in the example below to the adapter
configuration XML file:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 294 of 503

Youmust also implement the PopulationAdapterConnector method as follows:

Achieving Data Federation using the Generic

Adapter
Data federation is achieved by using the following:

FederationMapping Approach 295

Generic Adapter Federation API 296

How to Set Up Federation 299

Sample Data 309

Mapping Conventions 315

Federation Mapping Approach

Federationmapping is achieved by mapping the sub-TQL queries used by the UCMDB Federation
Framework to process a federation request. The general idea is that when a federation request is

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 295 of 503

received by the Generic Adapter, what happens is this:

1. Analyze the dynamic federation TQL query and compare it with a list of static federation TQL
queries defined by the user.

2. A static TQL query match is made. This TQL query is used to identify the neededmapping for the
given federation request and to create the RTN Structure (a Java object that will illustrate the tree
node structure that is needed from the connector) input argument that will be supplied to the
federation connector. (For more information, see the push-interfaces.jar file)

3. Send the federation call with the TQL argument to the connector.

4. Map the incoming RTN trees sent by the connector in the sameway as for population. See
"Achieving Data Population using the Generic Adapter" on page 279.

Federation Link Mapping

Federation Link Mapping is performed automatically as is the case for population link mapping. See
"Automatic Link Population" on page 284.

Generic Adapter Federation API

TheGeneric Adapter Federation API is very similar to the Generic Adapter Population API. This is
because theGeneric Federation Adapter Java interface is identical to the Generic Population Adapter
interface.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 296 of 503

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 297 of 503

Generic Adapter Connector Interface for Federation

Federation requests use the samemethod that is used for population requests, so the same population
connector implementation can be used. A new attribute was added in the PopulationConnectorInput
Java class called FlowType. The FlowType attribute can have two values, FEDERATION or
POPULATION. TheGeneric Adapter knows the request type based on this attribute.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 298 of 503

Supported Federation Queries

The federation and population queries are located in different folders. The
PopulationAdapterConnector Java interface offers the following twomethods for indicating the
supported population and federation queries:

l getPopulationQueries – Returns the collection of queries that the current connector supports for
population.

l getFederationQueries – Returns the collection of queries that the current connector supports for
federation.

How to Set Up Federation

This section contains:
Configure the Adapter Settings 300

Set Up Static Federation TQLQueries 300

Federation Setup Example 303

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 299 of 503

Configure the Adapter Settings

For a given a TQL query, the Generic Adapter needs to declare all the nodes from that TQL query in the
<supported-classes> tag . For example, if the TQL query has the form of an Incident linked to a Node,
then youmust declare both the node and the incident as supported classes in the adapter settings xml
file located in the adapter package ZIP file in the discoveryPatterns folder.

Set Up Static Federation TQL Queries

The rules for determining what static TQL queries are needed for a federation TQL query are:

1. Look at all the links in the federated TQL query which has one local end and one federated end. If
there is such a link, then a static TQL query must be created exactly like the one from the
federated TQL query.

2. Look at all nodes that are federated. A static TQL query with each federated node typemust be
created.

For example, taking the below TQL query as an example, three static TQL queries will be needed:

1. Node Linked To Incident - because the Node is only local and the incident is federated (this follows
rule 1 described above)

2. Business Service Linked To Incident – because the Business Service is only local and the

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 300 of 503

Incident is federated (this follows rule 1 described above)

3. Incident – because the Incident is federated (this follows rule 2 described above)

The framework sends the following queries to the adapter:

l A query with only the incident

l A query with the incident linked to the node with a relation of type connection

l A query with the incident linked to the node with a relation of typemembership

l A query with the incident linked to the business service with a relation of type connection

l A query with the incident linked to the business service with a relation of typemembership

Note: All queries that the federation engine sends to the adapter have the nameUser mapping
union FTQL.

After the results of theUser mapping union FTQL query are processed, other calls aremade to
retrieve the attributes of the objects. These calls contain a query called objects layout. The federation
engine will try to get all the attributes for a CI, but the connector does not need to provide them all; it is
enough to return only the ones required by themapping file.

The reason for sending the same query with different relations is because in the TQL query there is a
managed_relationship type link between the node and incident/business service and incident, but the
only valid links when trying to link these CI types together are connection andmembership.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 301 of 503

By using this approach we only need to define one static TQLwith a genericmanaged_relationship
type link, instead of defining two almost identical TQLs with different relationship link types, like below.

Also, similar to the relations, the adapter supports subtype CIs. For example, if you have a TQL
Incident related to a Node, you can also receive subtypes of the Node (Windows, Unix).

For the TQL query example above, three static TQL queries are required in order to configure the
federation:

l Incident TQL query

l Incident To Node TQL query withmanaged_relationship (if both connection andmembership are
required)

l Incident To Business Service TQL query withmanaged_relationship (if both connection and
membership are required)

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 302 of 503

Federation Setup Example

The example will use the following federation TQL query:

For this TQL query, the adapter must declare the supported classes in the adapter settings XML file
located in the adapter package ZIP file in the discoveryPatterns folder. The supported classes are
node, incident, and business_service.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 303 of 503

In the Integration Studio, the incident must be selected on the Federation tab, as shown below:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 304 of 503

For this TQL query, the following 3 static TQL queries are needed in the adapter:

1. Incident (Incident)

2. Incident and node withmanaged_relationship (Incident to Node)

3. Incident and business_servicewithmanaged_relationship (Incident to BusinessService)

Incident Incident To Node Incident linked to business_
service

For information about how to obtain static TQLs, see "Set Up Static Federation TQLQueries" on
page 300. Although these TQL queries have conditions dependent on the data present in UCMDB, this
should not affect the structure of the TQL queries or how themapping is performed.

For each of these TQL queries, amapping file is required in the adapter:

l Mapping for the Incident TQL query

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 305 of 503

l Mapping for the Incident To Node TQL query

l Mapping for the Incident to Business Service TQL query

After having themappings and the static TQL queries in place, federation will work for all subtypes of
node and business_service.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 306 of 503

An optimization can be done in this case to reduce the number of mappings. Currently there are 3
mappings needed, but themappings for Incident To Node and Incident To Business Service are the
same, so you can use only onemapping by putting a wildcard in the query-name parameter as
illustrated below:

By changing the query name to Incident To*, it means that all the static TQL queries whose names
start with Incident Towill use this mapping file. Therefore, instead of having 2mapping files for
Incident to Node and Incident To Business Service, we can use only the one from above (Incident
To*).

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 307 of 503

Note: It is mandatory that themapping files have the query_name attribute set to the
corresponding TQL query like for population (see examples above).

These TQL queries andmapping files must be present in the adapter, as shown below:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 308 of 503

Sample Data

By running the Generic Adapter Simulator package, it is possible to federate the following queries:

1. Incident Federation

2. Incident Related To Node Federation

3. Incident Related To Node and Business Service Federation

To ensure the sample federation TQL queries work as expected, create the following CIs in UCMDB:

Also, 3 new TQL queries are required in order to perform federation. Go toModeling Studio, create the
following 3 new TQL queries, and set the integration point on the incident:

4. Incident Federation

5. Incident Related To Node Federation

6. Incident Related To Node And Business Service Federation

This section contains:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 309 of 503

Incident Federation

In this case, all incidents from the gs integration point are being requested:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 310 of 503

Running this federated TQL query obtains the following result data (four instances of Incident):

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 311 of 503

Incident Related to Node Federation

In this case, all the incidents related to Node instances from UCMDB are being federated:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 312 of 503

The result of the TQL query is:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 313 of 503

Incident Related to Node and Business Service Federation

In this case, all incidents related to Node and Business Service instances are being federated:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 314 of 503

The result of the TQL query is:

Mapping Conventions

To ensure that the Generic Adapter is able to process federation requests, the following preconditions
must bemet:

l Class Population Requirement. All nodes in the ResultTreeNodes (RTNs) results returned by the
federation connector must be valid classes from the adapter-defined class model. For example, if
the returned RTN is amComputerwith a child of amPortfolio, both amComputer and
amPortfoliomust be classes defined in the ClassModel object returned by the adapter-specific
ClassModelConnector.

l Relationship Population Requirement. A parent-child relationship in the RTN results returned by
the federation connector implies a valid link between the parent RTN node and the child RTN node.
For example, if the returned RTN is amComputerwith a child of amPortfolio, then a
relantionship/link between amComputer and amPortfoliomust exist andmust be defined as a
ValidRelation in the ClassModel object returned by the adapter-specific ClassModelConnector.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 315 of 503

Reconciliation
When using the Generic Adapter framework to populate or federate data, the CIs must always have the
required reconciliation data in order to be accepted into UCMDB. When populating CI types such as
Running Software that require a container CI type, always make sure to populate the needed container
fields (for example, root_container_name and product_name) and the container CI (for example,
Node). To populate CIs that depend on a root container, the CI, its root container, and the link between
themmust be created in the same step (either with explicit link population or auto-complete link
population between the two CIs).

In addition, whenmapping the populated/federated CIs, consider mapping the global_id attribute, as
that will greatly aid the UCMDB reconciliation engine and should guarantee the exact CI reconciliation.

Generic Adapter API
The API exposed by the Generic Adapter framework is:

<UCMDB_Server>\lib\push-interfaces.jar
<UCMDB_Server>\lib\integrationFramework\GenericAdapter\generic-adapter-api-
factory.jar

The development of your Generic Adapter instancemight also require the Federation API:

<UCMDB_Server>\lib\federation-api.jar

Resource Locator APIs
The resource locator APIs can be used when editing Generic Adapter jobs. Implement the general and
population resource locator APIs to help find the adapter resources that are related to a selected job's
TQL query.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 316 of 503

The following image shows General Resource Locator API in the GenericConnector Java Interface:

The following image shows Population Query Resource Locator API in PopulationAdapterConnector
Java Interface:

To see the related resources for a job's TQL query:

1. In the Integration Studio, select an integration point.

2. In the Integration Jobs pane, select a job and click Edit Query Resources .

Create a Generic Adapter Package
A Generic Adapter package is similar to an EnhancedGeneric Push Adapter package. To create the
initial skeleton ZIP archive, it is recommended to copy an existing Generic Adapter package and
customize it as required. For more information about the adapter package, see "Achieving Data Push
using the Generic Adapter" on page 269.

The differences between an existing EnhancedGeneric Push Adapter package and aGeneric Adapter
package are:

l Adapter XML differences

o The adapter class is changed from PushAdapter toGenericAdapter:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 317 of 503

o The adapter capabilities include population

o Along with the definition of the Population connector, performed by the adapter setting:

the Generic Adapter (using the population feature) also requires the definition of the Push
Connector class:

l Mapping file folders

As opposed to the EnhancedGeneric Push Adapter (which requires its mapping files to be located
in the <adapter_package_zip>/adapterCode/<adapter_name>/mappings folder, the Generic
Adapter requires its mappings to be placed in three separate folders (one each for push, population,
and federation). The required folders are:

<adapter_package_zip>/adapterCode/<adapter_name>/mappings/push
<adapter_package_zip>/adapterCode/<adapter_name>/mappings/population
<adapter_package_zip>/adapterCode/<adapter_name>/mappings/federation

where <adapter_package_zip> refers to the zip archive that you will create for the generic adapter
package.

Note: Although theGeneric Adapter supports all three types of data synchronization (push,
population, and federation), a specific Generic Adapter can choose to supply only a subset of
those types.

Points to remember when creating a new adapter from an existing adapter

l TestAdapter\discoveryPatterns\TestAdapter.xml

l Modify the TestAdapter.xml file:

o <pattern xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
id="TestAdapter" xsi:noNamespaceSchemaLocation="../../Patterns.xsd"

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 318 of 503

description="…" schemaVersion="9.0" displayName="…">

o <adapter-id>TestAdapter</adapter-id>

l The ZIP file containing the new adapter should have the same name as the adapter itself -
TestAdapter.

Build an Adapter Package

Ensure that the adapter package contains the following folders:

l adapterCode. Under this folder, create a folder namedPushExampleAdapter, which will contain
the .jar file we created from the PushExampleAdapter.java. It will also contain a folder named
mappings, where you can place themapping file created earlier, computerIPMapping.xml. It
should also contain another folder named scripts that contains thePushFunctions.groovy file.

l discoveryConfigFiles. To contain configuration files such as the error codes used when reporting
an error using UpdateResult. In this example, the folder is empty.

l discoveryPatterns. To contain the push_example_adapter.xml.

l tql. To contain the TQL query created for the example. This folder is optional, but when the package
is deployed, the TQL query is automatically created.

Enable/Disable Attribute and Link Validation at Adapter Level

You can enable or disable attribute and link validation at adapter level for generic adapters by adding the
following setting:

<adapter-settings>

<adapter-setting
name="enable.attributes.links.validation">true</adapter-setting>

</adapter-settings>

To enable adapter level validation of attribute and link, set the adapter setting
enable.attributes.links.validation to true.

To disable adapter level validation of attribute and link, set the adapter setting
enable.attributes.links.validation to false.

Note: If the setting is not present, its default value is true, whichmeans that by default the
attribute and link validation is enabled.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 319 of 503

Population TQL Queries

The TQL queries to be used for population jobs must be included in the Generic Adapter's ZIP archive
and deployed with the adapter in UCMDB. The indicated TQL query must exist in UCMDB when a
population request is made, during the population flow.

These TQL queries must be included in the <zip>/tql/<folder_1>/../<folder_n>. Following is an
example of the folder structure:

Although population TQL queries are placed in the folder indicated above, the Population connector
must also confirm the supported population TQL queries in the correspondingmethod from the Java
interface. For more information, see "The Population Connector" on page 286.

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 320 of 503

Sample Package

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 321 of 503

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 322 of 503

Differences Between Push and Population Mapping
Although both push and populationmapping files have the same underlying XML schema, the files have
slightly different interpretations. For more information, see "Generic Adapter XML SchemaReference"
on the next page.

In the following pushmapping example, the interpretation is: take the results of the “Computer Push”
TQL query (run in UCMDB) and present in the Root tree structure, and create the amComputer entity
which will later on be sent to AM.

In the following populationmapping example, the interpretation is: take the results of the “Nodes
Population” TQL query (run in the external system) and present in the PC tree structure, and create the
UCMDB Root entity (of type Node; as indicated by the TQL query), which will later be added in
UCMDB.

How to Troubleshoot and Debug Using Generic

Adapter Log Files
For troubleshooting and debugging, use the following:

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 323 of 503

l Adjust logging levels in these files (set the loglevel variable to TRACE for themost detailed results):

o <UCMDB_DataFlowProbe>\conf\log\fcmdb.push.properties

<UCMDB_DataFlowProbe> is the UCMDB Data Flow Probe installation directory.

o <UCMDB_Server>\conf\log\reconciliation.properties

<UCMDB_Server> is the UCMDB Server installation directory.

l Analyze the following Generic Adapter log files:

o <UCMDB_DataFlowProbe>\runtime\log\fcmdb.push.all.log

o <UCMDB_DataFlowProbe>\runtime\log\fcmdb.push.configuration.log

o <UCMDB_DataFlowProbe>\runtime\log\fcmdb.push.connector.all.log

o <UCMDB_DataFlowProbe>\runtime\log\fcmdb.push.connector.configuration.log

o <UCMDB_DataFlowProbe>\runtime\log\fcmdb.push.mapping.log

o <UCMDB_DataFlowProbe>\runtime\log\fcmdb.push.all.log

l Analyze the following generic log files:

o <UCMDB_DataFlowProbe>\runtime\log\probe-error.log

o <UCMDB_DataFlowProbe>\runtime\log\WrapperProbeGw.log

o <UCMDB_Server>\runtime\log\error.log

o <UCMDB_Server>\runtime\log\cmdb.reconciliation.log

Adapters Using the Generic Adapter Framework
As a reference for developing your custom Generic Adapter, refer to the following adapters that shipped
with UCMDB as implementation guidelines, which should speed up your adapter development:

l The Asset Manager Adapter

l The ServiceManager Adapter

Generic Adapter XML Schema Reference
TheGeneric Adapter XML Schema can be found in the cmdb.jar file under the schema directory. The
schema file should be referenced while writing Generic Adapter mapping files in external editors. The

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 324 of 503

full path for the XSD file is:

<UCMDB_Server_Home>/lib/cmdb.jar/schema/generic-adapter.xsd

Developer ReferenceGuide
Chapter 8: Developing Generic Adapters

Micro Focus Universal CMDB (10.33) Page 325 of 503

Micro Focus Universal CMDB (10.33) Page 326 of 503

Part II: Using APIs

Chapter 9: Introduction to APIs
This chapter includes:

APIs Overview 327

APIs Overview
The following APIs are included with Universal CMDB:

l UCMDB Java API. Explains how third-party or custom tools can use the Java API to extract data
and calculations and to write data to the UCMDB (Universal ConfigurationManagement database).
For details, see "Universal CMDB API" on page 328.

l UCMDB Web Service API. Enables writing configuration item definitions and topological relations
to UCMDB, and querying the information with TQL and ad hoc queries. For details, see "Universal
CMDBWeb Service API" on page 339.

l Data Flow Management Java API. Enables managing probes, jobs, triggers and credentials for
Data Flow Management. For details, see "Data Flow Management Java API" on page 461.

l Data Flow Management Web Service API. Enables managing probes, jobs, triggers and
credentials for Data Flow Management. For details, see "Data Flow Management Web Service
API" on page 466.

Note: To gain the full value of the API documentation, it is recommended to access the online
documentation. The PDF version does not have the links into the API documentation that is
generated in html format.

Micro Focus Universal CMDB (10.33) Page 327 of 503

Chapter 10: Universal CMDB API
This chapter includes:

Conventions 328

Using the Universal CMDB API 328

General Structure of an Application 330

Put the API Jar File in the Classpath 332

Create an Integration User 332

UCMDB API Use Cases 335

Performance Improvement with a Bidirectional GlobalID - UcmdbID Mapping Cache 336

Examples 338

Conventions
This chapter uses the following conventions:

l UCMDB refers to the Universal ConfigurationManagement database itself. Universal CMDB refers
to the application.

l UCMDB elements andmethod arguments are spelled in the case in which they are specified in the
interfaces.

For full documentation on the available APIs, refer to the UCMDB API Reference.

These files are located in the following folder:

\\<UCMDB root directory>\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\UCMDB_JavaAPI\index.html

Using the Universal CMDB API

Note: Use this chapter in conjunction with the API Javadoc, available in the online Documentation
Library.

Micro Focus Universal CMDB (10.33) Page 328 of 503

The Universal CMDB API is used to integrate applications with the Universal CMDB (CMDB). The API
provides methods to:

l Add, remove, and update CIs and relations in the CMDB

l Retrieve information about the class model

l Retrieve information from the UCMDB history

l Runwhat-if scenarios

l Retrieve information about configuration items and relationships

Methods for retrieving information about configuration items and relationships generally use the
Topology Query Language (TQL). For details, see Topology Query Language in theUniversal CMDB
Modeling Guide.

Users of the Universal CMDB API should be familiar with:

l The Java programming language

l Universal CMDB

This section includes the following topics:

l "Uses of the API" below

l "Permissions" below

Uses of the API

The API is used to fulfill a number of business requirements. For example, a third-party system can
query the class model for information about available configuration items (CIs). For more use cases,
see "UCMDB API Use Cases" on page 335.

Permissions

The administrator provides login credentials for connecting with the API. The API client needs the user
name and password of an integration user defined in the CMDB. These users do not represent human
users of the CMDB, but rather applications that connect to the CMDB.

In addition, the user must have theAccess to SDK general action permission in order to log in.

Caution: The API client can also work with regular users as long as they have API authentication
permission. However, this option is not recommended.

Developer ReferenceGuide
Chapter 10: Universal CMDB API

Micro Focus Universal CMDB (10.33) Page 329 of 503

For details, see "Create an Integration User" on page 332.

General Structure of an Application
There is only one static factory, the UcmdbServiceFactory. This factory is the entry point for an
application. The UcmdbServiceFactory exposes getServiceProvider methods. Thesemethods return
an instance of theUcmdbServiceProvider interface.

The client creates other objects using interfacemethods. For example, to create a new query definition,
the client:

1. Gets the query service from themain CMDB service object.

2. Gets a query factory object from the service object.

3. Gets a new query definition from the factory.

UcmdbServiceProvider provider =
 UcmdbServiceFactory.getServiceProvider(HOST_NAME, PORT);
UcmdbService ucmdbService =
 provider.connect(provider.createCredentials(USERNAME,
 PASSWORD), provider.createClientContext("Test"));
TopologyQueryService queryService = ucmdbService.getTopologyQueryService();
TopologyQueryFactory factory = queryService.getFactory();
QueryDefinition queryDefinition = factory.createQueryDefinition("Test
Query");
queryDefinition.addNode("Node").ofType("host");
Topology topology = queryService.executeQuery(queryDefinition);
System.out.println("There are " + topology.getAllCIs().size() + " hosts in
uCMDB");

The services available from UcmdbService are:

Service Methods Use

getAuthorizationModelService Perform authorization operations (create users and user
groups, assign roles to users and groups, and so on).

getClassModelService Information about types of CIs and relations

getConfigurationService Infrastructure settings management, for server
configuration

getDataStoreMgmtService Query data store information including which CIs and
attributes will be federated.

Developer ReferenceGuide
Chapter 10: Universal CMDB API

Micro Focus Universal CMDB (10.33) Page 330 of 503

Service Methods Use

getDDMConfigurationService Configure the Data Flow Management system

getDDMManagementService Analyze and view the progress, results, and errors of the
Data Flow Management system

getDDMZoneService Import and export management zones (with their
activities).

getHistoryService Information about history of monitored CIs (changes,
removals, and so on)

getImpactAnalysisService Run impact analysis scenario (also known as
correlation).

getLicensingService Query information about licenses installed in the system.

getMultipleCMDBService Convert between global IDs and UCMDB IDs.

getMultiTenancyService Create, read, update, and delete tenants.

getPersistencyService Persist binary data into key-value pairs.

getQueryManagementService Manage access to queries - save, delete, list existing.
Also provides query validation and discovery of queries
dependencies.

getReconciliationService Supplies identification andmerging capabilities.

getResourceBundleManagementService Resource tagging ("bundling" services). Allows explicit
creation of new tags and removal of tags from all tagged
resources.

getResourceManagementService Deploy resource packages (of TQL queries, views,
users, and so on) to the system.

getSecurityService Verify whether credentials are valid.

getServerService Query generic information about the system.

getSnapshotService Provide services for managing snapshots (get, save,
compare, and so on)

getSoftwareSignatureService Define software items to be discovered by the Data Flow
Management system

getStateService Provide services for managing states (list, add, remove,
and so on)

getSystemHealthService Provide system health services (basic system
performance indicators, capacity and availability metrics)

getTopologyQueryService Get information about the IT universe

Developer ReferenceGuide
Chapter 10: Universal CMDB API

Micro Focus Universal CMDB (10.33) Page 331 of 503

Service Methods Use

Note: Starting with version 10.00, you can not get
the discoveryjobCI Type instance, because it is
saved in Unified ResourceManager (URM). You can
useDDMConfigurationService instead. For more
details, see KM02529119.

getTopologyUpdateService Change information in the IT universe

getUcmdbVersion Query UCMDB and content pack versions and build
information.

getViewArchiveService View result archiving services. Allows saving the current
view result and retrieving previously saved results.

getViewService View execution service (execute definition, execute
saved) andmanagement service (save, delete, list
existing). Also provides view validation and
dependencies discovery.

The client communicates with the server over HTTP(S).

Put the API Jar File in the Classpath
The use of this API set requires the file ucmdb-api.jar. You can download the file by entering
https://<localhost>:8443 in aWeb browser where localhost is themachine where UCMDB is
installed and clicking theAPI Client Download link.

Put the .jar file in the classpath before compiling or running your application.

Note: Use of the UCMDB Java API Jar requires you to have JRE version 6 or later installed.

Create an Integration User
You can create a dedicated user for integrations between other products and UCMDB. This user
enables a product that uses the UCMDB client SDK to be authenticated in the server SDK and execute
the APIs. Applications written with this API set must log on with integration user credentials.

Caution: It is also possible to connect with a regular UCMDB user (for instance, admin).
However, this option is not recommended. To connect with a UCMDB user, youmust grant the
user API authentication permission.

Developer ReferenceGuide
Chapter 10: Universal CMDB API

Micro Focus Universal CMDB (10.33) Page 332 of 503

https://softwaresupport.softwaregrp.com/km/KM02529119

To create an integration user:

1. Launch theWeb browser and enter the server address, as follows:

https://localhost:8443/jmx-console

Youmay have to log in with a user name and password (the default user name is sysadmin).

2. Under UCMDB, click service=UCMDB Authorization Services.

3. Locate the createUser operation. This method accepts the following parameters:

o customerId. The customer ID.

o username. The integration user's name.

o userDisplayName. The integration user's display name.

o userLoginName. The integration user's login name.

o password. The integration user's password.

The default password policy requires the password to include at least one of each of the four
following types of characters:

l Uppercase alphabetic characters

l Lowercase alphabetic characters

l Numeric characters

l Symbol characters ,\:/. _?&%=+-[]()|

It also requires the password to adhere to theminimum length, which is set by thePassword
minimum length infrastructure setting.

4. Click Invoke.

5. In a single-tenant environment, locate the setRolesForUsermethod and enter the following
parameters:

o userName. The integration user's name.

o roles. SuperAdmin.

Click Invoke.

6. Locate the setUserServerAdministratorValuemethod and enter the following parameters:

o customerID. The customer ID.

o userLoginName. The integration user's login name.

Developer ReferenceGuide
Chapter 10: Universal CMDB API

Micro Focus Universal CMDB (10.33) Page 333 of 503

o serverAdministratorValue. Select True.

Click Invoke.

7. In amulti-tenant environment, locate the grantRolesToUserForAllTenantsmethod and enter the
following parameters to assign the role in connection with all tenants:

o userName. The integration user's name.

o roles. SuperAdmin.

Click Invoke.

Alternatively, to assign the role in connection with specific tenants, invoke the
grantRolesToUserForTenantsmethod, using the same userName and roles parameter values.
For the tenantNames parameter, enter the required tenants.

8. Either createmore users, or close the JMX console.

9. Log on to UCMDB as an administrator.

10. From theAdministration tab, runPackage Manager.

11. Click theCreate custom package icon.

12. Enter a name for the new package, and click Next.

13. In the Resource Selection tab, underSettings, click Users.

14. Select a user or users that you created using the JMX console.

15. Click Next and then Finish. Your new package appears in the Package Name list in Package
Manager.

16. Deploy the package to the users who will run the API applications.

For details, see the section "How to Deploy a Package" in theUniversal CMDB Administration
Guide.

Note: The integration user is per customer. To create a stronger integration user for cross-
customer usage, use a systemUserwith the isSuperIntegrationUser flag set to true. Use
the systemUsermethods (removeUser, resetPassword, UserAuthenticate, and so on).

There are two out-of-the-box system users. You need provide passwords for them during
installation. However, youmay change their passwords after installation using the
resetPasswordmethod.

o sysadmin/<password>

o UISysadmin/<password> (this user is also theSuperIntegrationUser).

Developer ReferenceGuide
Chapter 10: Universal CMDB API

Micro Focus Universal CMDB (10.33) Page 334 of 503

If you change the UISysadmin password using resetPassword, youmust do the following:

i. In the JMX Console, locate theUCMDB-UI:name=UCMDB Integration service.

ii. Run setCMDBSuperIntegrationUserwith the user name and new password of the
integration user.

iii. Restart the UCMDB server for the change to take effect.

UCMDB API Use Cases
The use cases listed in this section assume two systems:

l Universal CMDB server

l A third-party system that contains a repository of configuration items

This section includes the following topics:

l "Populating the CMDB " below

l "Querying the CMDB " below

l "Querying the Class Model" on the next page

l "Analyzing Change Impact " on the next page

Populating the CMDB

Use cases:

l A third-party asset management updates the CMDB with information available only in asset
management

l A number of third-party systems populate the CMDB to create a central CMDB that can track
changes and perform impact analysis

l A third-party system creates Configuration Items and Relations according to third-party business
logic, to leverage the UCMDB query capabilities

Querying the CMDB

Use cases:

Developer ReferenceGuide
Chapter 10: Universal CMDB API

Micro Focus Universal CMDB (10.33) Page 335 of 503

l A third-party system gets the Configuration Items and Relations that represent the SAP system by
retrieving the results of the SAP TQL

l A third-party system gets the list of Oracle servers that have been added or changed in the last five
hours

l A third-party system gets the list of servers whose host name contains the lab substring

l A third-party system finds the elements related to a given CI by getting its neighbors

Querying the Class Model

Use cases:

l A third-party system enables users to specify the set of data to be retrieved from the CMDB. A user
interface can be built over the class model to show users the possible properties and prompt them
for required data. The user can then choose the information to be retrieved.

l A third-party system explores the class model when the user cannot access the UCMDB user
interface.

Analyzing Change Impact

Use case:

l A third-party system outputs a list of the business services that could be impacted by a change on a
specified host.

Performance Improvement with a Bidirectional

GlobalID - UcmdbID Mapping Cache
In version 10.33, the implementation of a bidirectional GlobalID - UcmdbID mapping cache at the
uppermost level enables faster retrieval of Global IDs by Ucmdb ID and vice-versa. For example,
before executing a query to retrieve the UCMDB ID for a global ID, the entry is searched in the
bidirectional cache first, and if there is amatch, the value will be retrieved directly from themapping
cache.

Usage

Developer ReferenceGuide
Chapter 10: Universal CMDB API

Micro Focus Universal CMDB (10.33) Page 336 of 503

Themapping cache works as is, by default, no special care is required from the users. However, there
are 3 new UCMDB settings which allow you to customize the cache's configuration (by invoking the
setGlobalSettingValue JMX method from theUCMDB:service=Settings Services category):

l cache.globalucmdbid.maxsize - Specify themaximum size of the cache, in number of entries;
default value 1000.

l cache.globalucmdbid.timeout.active - Specify the time, in seconds, after which an entry will be
removed from the cache (regardless of whether it was used or not); default value 1200 (20minutes).

l cache.globalucmdbid.timeout.idle - Specify the time, in seconds, after which an entry will e
removed from the cache if not used in themeantime; default value 300 (5 minutes).

Therefore, cache entries will be evicted after a time as specified in the above settings. If the cache fills,
there is a Least Frequently Used (LFU) eviction policy.

The cache is added in the API-server layer of the SDK, so it only has effect for the SDK methods of
conversion from global ID to UCMDB ID, that is,MultipleCMDBService.

The following is an example of using one of themethods in theMultipleCMDBService:

//connect to the ucmdbService
MultipleCMDBService multipleCMDBService = ucmdbService.getMultipleCMDBService();
GlobalIds globalIds = multipleCMDBService.getFactory().createGlobalIds(1);
globalIds.add(globalId);

GlobalIdToIdMapping globalIdToIdMapping =
multipleCMDBService.convertGlobalIdsToIds(globalIds);
System.out.println("UcmdbId: " + globalIdToIdMapping.getID(globalId));

Performance Improvement

Compared to version 10.32, performance evaluation for themapping cache shows an improvement of
performance between 15% - 78% (depending on scenarios) over the same operations without the
cache.

Scenario Performance Improvement

Conversion from Global_Id to Ucmdb_Id for a single CI 45% increase in performance

Conversion from Global_Id to Ucmdb_Id for a bulk of CIs (840) 78% increase in performance

Conversion from Ucmdb_Id to Global_Id for a bulk of CIs (840) 15% increase in performance

There is also an 18% increase in the average number of successfully completed requests.

Developer ReferenceGuide
Chapter 10: Universal CMDB API

Micro Focus Universal CMDB (10.33) Page 337 of 503

Examples
See the following code samples:

l Create a Connection

l Create and Execute an AdHoc Query

l Create and Execute a View

l Add and Delete Data

l Execute an Impact Analysis

l Query the Class Model

l Query a History Sample

These files are located in the following directory:

\\<UCMDB root directory>\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\JavaSDK_Samples\

Developer ReferenceGuide
Chapter 10: Universal CMDB API

Micro Focus Universal CMDB (10.33) Page 338 of 503

Chapter 11: Universal CMDB Web Service API
This chapter includes:

Conventions 339

Micro Focus Universal CMDB (UCMDB)Web Service API Overview 340

Getting Started with Universal CMDBWeb Service 343

Call the Universal CMDBWeb Service 345

Query the CMDB 345

Update the CMDB 349

Query the UCMDB Class Model 350

Query for Impact Analysis 353

UCMDB General Parameters 353

UCMDB Output Parameters 356

UCMDB Query Methods 357

UCMDB UpdateMethods 370

UCMDB Impact Analysis Methods 373

Actual StateWeb Service API 375

UCMDBWeb Service API Use Cases 377

Examples 379

Conventions
This chapter uses the following conventions:

l UCMDB refers to the Universal ConfigurationManagement database itself. Universal CMDB refers
to the application.

l UCMDB elements andmethod arguments are spelled in the case in which they are specified in the
schema. An element or argument to amethod is not capitalized. For example, a relation is an
element of type Relation passed to amethod.

For full documentation on the request and response structures, refer to the UCMDBWeb Service API
Reference. These files are located in the following folder:

Micro Focus Universal CMDB (10.33) Page 339 of 503

<UCMDB root directory>\UCMDBServer\deploy\ucmdb-docs\docs\eng\APIs\CMDB_
Schema\webframe.html

Micro Focus Universal CMDB (UCMDB) Web Service

API Overview

Note: Use this chapter in conjunction with the UCMDB schema documentation, available in the
online Documentation Library.

The Universal CMDBWeb Service API is used to integrate applications with theMicro
Focus Universal CMDB (UCMDB). The API provides methods to:

l Add, remove, and update CIs and relations in the CMDB

l Retrieve information about the class model

l Retrieve impact analysis

l Retrieve information about configuration items and relationships

l Manage credentials: view, add, update, and remove

l Manage jobs: view status, activate, and deactivate

l Manage triggers: add or remove a trigger CI, and add, remove, or disable a trigger TQL

l View general data on domains and Probes

Methods for retrieving information about configuration items and relationships generally use the
Topology Query Language (TQL). For details, see Topology Query Language in theUniversal CMDB
Modeling Guide.

Users of the Universal CMDBWeb Service API should be familiar with:

l The SOAP specification

l An object-oriented programming language such as C++, C# or Java

l Universal CMDB

l Data Flow Management

This section includes the following topics:

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 340 of 503

l "Uses of the API" below

l "Permissions" below

Uses of the API

The UCMDBWeb Services API is used to fulfill a number of business requirements. For example:

l A third-party system can query the class model for information about available configuration items
(CIs).

l A third-party asset management tool can update the CMDB with information available only to that
tool, thereby unifying its data with data collected by Micro Focus applications.

l A number of third-party systems can populate the CMDB to create a central CMDB that can track
changes and perform impact analysis.

l A third-party system can create entities and relations according to its business logic, and then write
the data to the CMDB to take advantage of the CMDB query capabilities.

l Other systems, such as the Release Control (CCM) system, can use the Impact Analysis methods
for change analysis.

Permissions

To access theWSDL file for the web service, go to:
http://localhost:8080/axis2/services/UcmdbService?wsdl. You will need to provide server
administrator user credentials to view theWSDL file.

Note: The Axis2 administration console is not accessible.

The user must have theRun Legacy API general action permission in order to log in.

The following table displays the additional required permissions for eachWeb Service API command:

Web Service API command Required Permissions

addCIsAndRelations
deleteCIsAndRelations
updateCIsAndRelations

General Action: Data Update

executeTopologyQueryByName(AdHoc)
executeTopologyQueryByNameWithParameters(AdHoc)
executeTopologyQueryWithParameters(AdHoc)

General Action: Run Query by
Definition

For each query: View

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 341 of 503

Web Service API command Required Permissions

permission

getTopologyQueryExistingResultByName
getTopologyQueryResultCountByName
releaseChunks
pullTopologyMapChunks
getCINeighbours
getFilteredCIsByType
getCIsById
getCIsByType
getRelationsById

General Action: View CIs

For each query: View
permission

getQueryNameOfView General Action: View CIs

For each view: View permission

getChangedCIs General Action: View History,
View CIs

calculateImpact
getImpactPath
getImpactRulesByGroupName
getImpactRulesByNamePrefix

General Action: Run Impact
Analysis

getAllClassesHierarchy
getClassAncestors
getCmdbClassDefinition

None

Note: When the root context has been changed in UCMDB, follow these steps to enable access
to theWeb Service API:

1. Open the \UCMDB\UCMDBServer\deploy\axis2\WEB-INF\web.xml configuration file and
locate the following section:

<servlet-class>
org.apache.axis2.transport.http.AxisServlet
</servlet-class>

Add the following lines after that:

<init-param>
<param-name>axis2.find.context</param-name>
<param-value>false</param-value>
</init-param>

2. Open the \UCMDB\UCMDBServer\deploy\axis2\WEB-INF\conf\axis2.xml configuration
file and locate the following line:

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 342 of 503

<parameter name="enableSwA" locked="false">false</parameter>

Add the following line after it:

<parameter name="contextRoot" locked="false">test1/setup1/axis2
</parameter>

where test1/setup1 is your root context.

(To remove the root context, remove the text added to the path.)

3. Restart the UCMDB server.

Getting Started with Universal CMDB Web Service

How to Generate the Java Web Service Client Jar

1. Download and install Axis2

a. Go to https://axis.apache.org/axis2/java/core/index.html, download and extract the latest
Axis2 package. (Currently axis2-1.7.3-bin.zip)

b. Set up theAXIS2_HOME environment variable to the extraction directory. (In this example,
C:\axis2-1.7.3)

2. Download and install Ant

a. Go to http://ant.apache.org/bindownload.cgi, download and extract the latest Ant package.
(Currently apache-ant-1.9.7-bin.zip)

b. Add the Ant bin directory to theWindows Path environment variable (In this caseC:\apache-
ant-1.9.7)

3. Obtain the needed UCMDB WSDL

a. Create a temp folder: C:\Temp

b. Copy the file <UCMDB_install_dir>\deploy\axis2\WEB-INF\services\ucmdb_service.aar
from previous step into the Temp folder.

c. The ucmdb_service.aar file is a zip file. You can extract its content toC:\Temp.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 343 of 503

https://axis.apache.org/axis2/java/core/index.html
http://ant.apache.org/bindownload.cgi

Note: If for some reasonWindows is not recognizing it as a zip file, change its extension
to .zip. Depending on archiving utility a folder ucmdb_servicemay be created inside the
Temp folder.

4. Generate the Web Service client jar

a. Create a working directory, for example, C:\WS Client.

b. Switch to the working directory and execute the following command to build the Java source
files and the Ant build.xml file:

"C:\axis2-1.7.3\bin\wsdl2java.bat" -s -d adb -S generated_ws_code_client
-uri "C:\Temp\ucmdb_service\META-INF\UcmdbService.wsdl" -p
com.hp.ucmdb.generated.services

c. Execute the following command to build the Java client JAR file:

ant

d. If everything completes successfully, you should have the following:

l C:\WS Client\build\classes - Will contain the generated classes

l C:\WS Client\build\lib\UcmdbService-test-client.jar

How to Write a Simple Java Web Service Client for

UCMDB

The following is an example for aWeb Service client.

1. Inside the working directory, create a new folderWS_Demo\src, and switch to this folder.

a. Create a new file namedDemo.java, and copy the content of theWebServiceAPI_
Samples/WebServAPI_Example_Base_Class.html into this new file.

b. Create a new file namedQueryDemo.java, and copy the content of theWebServiceAPI_
Samples/WebServAPI_QueryExample.html into this new file.

2. Import theWS_Demo project using your favorite IDE.

Add the following folders as 3rd party libraries:

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 344 of 503

o C:\WS Client\build\lib\ - We need theUcmdbService-test-client.jar file from this folder.

o C:\axis2-1.7.3\lib\ - We need all jars from this folder.

Call the Universal CMDB Web Service
Use standard SOAP programming techniques in the Universal CMDBWeb Service API to enable
calling server-sidemethods. If the statement cannot be parsed or if there is a problem invoking the
method, the API methods throw a SoapFault exception. When a SoapFault exception is thrown, the
UCMDB populates one or more of the error message, error code, and exceptionmessage fields. If
there is no error, the results of the invocation are returned.

SOAP programmers can access theWSDL at:

http://<server>[:port]/axis2/services/UcmdbService?wsdl

The port specification is only necessary for non-standard installations. Consult your system
administrator for the correct port number.

The URL for calling the service is:

http://<server>[:port]/axis2/services/UcmdbService

For examples of connecting to the CMDB, see "UCMDBWeb Service API Use Cases" on page 377.

Query the CMDB
The CMDB is queried using the APIs described in " UCMDB Query Methods" on page 357. The queries
and the returned CMDB elements always contain real UCMDB IDs. For examples of using query
methods, seeQuery Example.

This section includes the following topics:

l "Just In TimeResponse Calculation" on the next page

l "Processing Large Responses" on the next page

l "Specifying Properties to Return" on the next page

l "Concrete Properties" on page 347

l "Derived Properties" on page 348

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 345 of 503

l "Naming Properties" on page 348

l "Other Property Specification Elements" on page 348

Just In Time Response Calculation

For all query methods, the UCMDB server calculates the values requested by the query method when
the request is received, and returns results based on the latest data. The result is always calculated at
the time the request is received, even if the TQL query is active and there is a previously calculated
result. Therefore, the results of running a query returned to the client applicationmay be different from
the results of the same query displayed on the user interface.

Tip: If your application uses the results of a given query more than once and the data is not
expected to change significantly between uses of the result data, you can improve performance by
having the client application store the data rather than repeatedly running the query.

Processing Large Responses

The response to a query always includes the structures for the data requested by the query method,
even if no actual data is being transmitted. For many methods where the data is a collection or map, the
response also includes the ChunkInfo structure, comprised of chunksKey and numberOfChunks. The
numberOfChunks field indicates the number of chunks containing data that must be retrieved.

Themaximum transmission size of data is set by the system administrator. If the data returned from
the query is larger than themaximum size, the data structures in the first response contain no
meaningful information, and the value of the numberOfChunks field is 2 or greater. If the data is not
larger than themaximum, the numberOfChunks field is 0 (zero), and the data is transmitted in the first
response. Therefore, in processing a response, check the numberOfChunks value first. If it is greater
than 1, discard the data in the transmission and request the chunks of data. Otherwise, use the data in
the response.

For information on handling chunked data, see "pullTopologyMapChunks" on page 368 and
"releaseChunks" on page 369.

Specifying Properties to Return

CIs and relations generally havemany properties. Somemethods that return collections or graphs of
these items accept input parameters that specify which property values to return with each item that
matches the query. The CMDB does not return empty properties. Therefore, the response to a query
may have fewer properties than requested in the query.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 346 of 503

This section describes the types of sets used to specify the properties to return.

Properties can be referenced in two ways:

l By their names

l By using names of predefined properties rules. Predefined properties rules are used by the CMDB
to create a list of real property names.

When an application references properties by name, it passes a PropertiesList element.

Tip: Whenever possible, use PropertiesList to specify the names of the properties in which you
are interested, rather than a rule-based set. The use of predefined properties rules usually results in
returningmore properties than needed, and incurs a price in performance.

There are two types of predefined properties: qualifier properties and simple properties.

l Qualifier properties. Use this when the client application should pass a QualifierProperties
element (a list of qualifiers that can be applied to properties). The CMDB converts the list of
qualifiers passed by the client application to the list of the properties to which at least one of the
qualifiers applies. The values of these properties are returned with the CI or Relation elements.

l Simple properties. To use simple rule-based properties, the client application passes a
SimplePredefinedProperty or SimpleTypedPredefinedProperty element. These elements
contain the name of the rule by which the CMDB generates the list of properties to return. The rules
that can be specified in a SimplePredefinedProperty or SimpleTypedPredefinedProperty
element are CONCRETE, DERIVED, and NAMING.

Concrete Properties

Concrete properties are the set of properties defined for the specified CIT. The properties added by
derived classes are not returned for instances of those derived classes.

A collection of instances returned by amethodmay consist of instances of a CIT specified in the
method invocation and instances of CITs that inherit from that CIT. The derived CITs inherit the
properties of the specified CIT. In addition, the derived CITs extend the parent CIT by adding
properties.

Example of Concrete Properties:

CIT T1 has properties P1 and P2. CIT T11 inherits from T1 and extends T1with properties P21 and
P22.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 347 of 503

The collection of CIs of type T1 includes the instances of T1 and T11. The concrete properties of all
instances in this collection are P1 and P2.

Derived Properties

Derived properties are the set of properties defined for the specified CIT and, for each derived CIT, the
properties added by the derived CIT.

Example of Derived Properties:

Continuing the example from concrete properties, the derived properties of instances of T1 are P1
and P2. The derived properties of instances of T11 are P1, P2, P21, and P22.

Naming Properties

The naming properties are display_label and data_name.

Other Property Specification Elements

l PredefinedProperties

PredefinedProperties can contain a QualifierProperties element and a
SimplePredefinedProperty element for each of the other possible rules. A
PredefinedProperties set does not necessarily contain all types of lists.

l PredefinedTypedProperties

PredefinedTypedProperties is used to apply a different set of properties to each CIT.
PredefinedTypedProperties can contain a QualifierProperties element and a
SimpleTypedPredefinedProperty element for each of the other applicable rules. Because
PredefinedTypedProperties is applied to each CIT individually, derived properties are not
relevant. A PredefinedProperties set does not necessarily contain all applicable types of lists.

l CustomProperties

CustomProperties can contain any combination of the basic PropertiesList and the rule-based
property lists. The properties filter is the union of all the properties returned by all the lists.

l CustomTypedProperties

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 348 of 503

CustomTypedProperties can contain any combination of the basic PropertiesList and the
applicable rule-based property lists. The properties filter is the union of all the properties returned by
all the lists.

l TypedProperties

TypedProperties is used to pass a different set of properties for each CIT. TypedProperties is a
collection of pairs composed of type names and properties sets of all types. Each properties set is
applied only to the corresponding type.

Update the CMDB
You update the CMDB with the update APIs. For details of the API methods, see " UCMDB Update
Methods" on page 370.

This task includes the following steps:

l "UCMDB Update Parameters" below

l "Use of ID Types with UpdateMethods" on the next page

UCMDB Update Parameters

This topic describes the parameters used only by the service's updatemethods.

l CIsAndRelationsUpdates

The CIsAndRelationsUpdates type consists of CIsForUpdate, relationsForUpdate,
referencedRelations, and referencedCIs. A CIsAndRelationsUpdates instance does not
necessarily include all three elements.

CIsForUpdate is a CIs collection. relationsForUpdate is a Relations collection. The CI and
relation elements in the collections have a props element. When creating a CI or relation,
properties that have either the required attribute or the key attribute in the CI Type definitionmust
be populated with values. The items in these collections are updated or created by themethod.

referencedCIs and referencedRelations are collections of CIs that are already defined in the
CMDB. The elements in the collection are identified with a temporary ID in conjunction with all the
key properties. These items are used to resolve the identities of CIs and relations for update. They
are never created or updated by themethod.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 349 of 503

Each of the CI and relation elements in these collections has a properties collection. New items
are created with the property values in these collections.

Use of ID Types with Update Methods

The following describes ID CITs, and CIs and relations. When the ID is not a real CMDB ID, the type
and key attributes are required.

l Deleting or Updating Configuration Items

A temporary or empty ID may be used by the client when calling amethod to delete or update an
item. In this case, the CI type and the "Key Attributes" that identify the CI must be set.

l Deleting or Updating Relations

When deleting or updating relations, the relation ID can be empty, temporary, or real.

If a CI's ID is temporary, the CI must be passed in the referencedCIs collection and its key
attributes must be specified. For details, see referencedCIs in "Update the CMDB" on the previous
page.

l Inserting New Configuration Items into the CMDB

It is possible to use either an empty ID or a temporary ID to insert a new CI. However, if the ID is
empty, the server cannot return the real CMDB ID in the structure createIDsMap because there is
no clientID. For details, see "addCIsAndRelations" on page 370 and " UCMDB Query Methods"
on page 357.

l Inserting New Relations into the CMDB

The relation ID can be either temporary or empty. However, if the relation is new but the
configuration items on either end of the relation are already defined in the CMDB, then those CIs
that already exist must be identified by a real CMDB ID or be specified in a referencedCIs
collection.

Query the UCMDB Class Model
The class model methods return information about CITs and relations. The class model is configured
using the CI TypeManager. For details, see CI TypeManager in theUniversal CMDB Modeling Guide.

This section provides information on the followingmethods that return information about CITs and
relations:

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 350 of 503

l "getClassAncestors" below

l "getAllClassesHierarchy" below

l "getCmdbClassDefinition" on the next page

getClassAncestors

The getClassAncestorsmethod retrieves the path between the given CIT and its root, including the
root.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

className The type name. For details, see "Type Name" on page 355.

Output

Parameter Comment

classHierarchy A collection of pairs of class names and parent class name.

comments For internal use only.

getAllClassesHierarchy

The getAllClassesHierarchymethod retrieves the entire class model tree.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 351 of 503

Output

Parameter Comment

classesHierarchy A collection of pairs of class name and parent class name.

comments For internal use only.

getCmdbClassDefinition

The getCmdbClassDefinitionmethod retrieves information about the specified class.

If you use getCmdbClassDefinition to retrieve the key attributes, youmust also query the parent
classes up to the base class. getCmdbClassDefinition identifies as key attributes only those
attributes with the ID_ATTRIBUTE set in the class definition specified by className. Inherited key
attributes are not recognized as key attributes of the specified class. Therefore, the complete list of key
attributes for the specified class is the union of all the keys of the class and of all its parents, up to the
root.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on the next page.

className The type name. For details, see "UCMDB General Parameters " on the next page.

Output

Parameter Comment

cmdbClass The class definition, consisting of name, classType, displayLabel, description,
parentName, qualifiers, and attributes.

comments For internal use only.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 352 of 503

Query for Impact Analysis
The Identifier in the impact analysis methods points to the service's response data. It is unique for
the current response and is discarded from the server's memory cache after 10minutes of non-use.

For examples of the use of the impact analysis methods, see Impact Analysis Example in the
Universal CMDB API Reference.

UCMDB General Parameters
This section describes themost common parameters of the service's methods.

This section includes the following topics:

l "CmdbContext" below

l "ID" below

l "Key Attributes" on the next page

l "ID Types" on the next page

l "CIProperties" on the next page

l "Type Name" on page 355

l "Configuration Item (CI)" on page 355

l "Relation" on page 355

CmdbContext

All UCMDBWeb Service API service invocations require a CmdbContext argument. CmdbContext is a
callerApplication string that identifies the application that invokes the service. CmdbContext is
used for logging and troubleshooting.

ID

Every CI and Relation has an ID field. It consists of a case-sensitive ID string and an optional temp
flag, indicating whether the ID is temporary.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 353 of 503

Key Attributes

For identifying a CI or Relation in some contexts, key attributes can be used in place of a CMDB ID.
Key attributes are those attributes with the ID_ATTRIBUTE set in the class definition.

In the user interface, the key attributes have a key icon next to them in the list of Configuration Item
Type attributes in the user interface. For details, see Add/Edit Attribute Dialog Box in theUniversal
CMDB Modeling Guide. For information about identifying the key attributes from within the API client
application, see "getCmdbClassDefinition" on page 352.

ID Types

An ID element can contain a real ID, or a temporary ID.

A real ID is a string assigned by the CMDB that identifies an entity in the database. A temporary ID can
be any string that is unique in the current request.

A temporary ID can be assigned by the client and often represents the ID of the CI as stored by the
client. It does not necessarily represent an entity already created in the CMDB. When a temporary ID is
passed by the client, if the CMDB can identify an existing data configuration item using the CI key
properties, that CI is used as appropriate for the context as if it had been identified with a real ID.

CIProperties

A CIProperties element is composed of collections, each containing a sequence of name-value
elements that specify properties of the type indicated by the collection name. None of the collections
are required, so the CIProperties element can contain any combination of collections.

CIProperties are used by CI and Relation elements. For details, see "Configuration Item (CI)" on
the next page and "Relation" on the next page.

The properties collections are:

l dateProps - collection of DateProp elements

l doubleProps - collection of DoubleProp elements

l floatProps - collection of FloatProp elements

l intListProps - collection of intListProp elements

l intProps - collection of IntProp elements

l strProps - collection of StrProp elements

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 354 of 503

l strListProps - collection of StrListProp elements

l longProps - collection of LongProp elements

l bytesProps - collection of BytesProp elements

l xmlProps - collection of XmlProp elements

Type Name

The type name is the class name of a configuration item type or relation type. The type name is used in
code to refer to the class. It should not be confused with the display name, which is seen on the user
interface where the class is mentioned, but which is meaningless in code.

Configuration Item (CI)

A CI element is composed of an ID, a type, and a props collection.

When using " UCMDB UpdateMethods" to update a CI, the ID element can contain a real CMDB ID or
a client-assigned temporary ID. If a temporary ID is used, set the temp flag to true. When deleting an
item, the ID can be empty. " UCMDB Query Methods" take real IDs as input parameters and return real
IDs in the query results.

The type can be any type name defined in the CI TypeManager. For details, see CI TypeManager in
the Universal CMDB Modeling Guide.

The props element is a CIProperties collection. For details, see "UCMDB General Parameters " on
page 353.

Relation

A Relation is an entity that links two configuration items. A Relation element is composed of an ID, a
type, the identifiers of the two items being linked (end1ID and end2ID), and a props collection.

When using " UCMDB UpdateMethods" to update a Relation, the value of the Relation's ID can be
a real CMDB ID or a temporary ID. When deleting an item, the ID can be empty. " UCMDB Query
Methods" take real IDs as input parameters and return real IDs in the query results.

The relation type is the Type Name of the UCMDB class from which the relation is instantiated. The
type can be any of the relation types defined in the CMDB. For further information on classes or types,
see "Query the UCMDB Class Model " on page 350.

For details, see CI TypeManager in theUniversal CMDB Modeling Guide.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 355 of 503

The two relation end IDs must not be empty IDs because they are used to create the ID of the current
relation. However, they both can have temporary IDs assigned to them by the client.

The props element is a CIProperties collection. For details, see "CIProperties" on page 354.

UCMDB Output Parameters
This section describes themost common output parameters of the servicemethods. For more details,
refer to the online schema documentation.

This section includes the following topics:

l "CIs" below

l "ShallowRelation" below

l "Topology" below

l "CINode" on the next page

l "RelationNode" on the next page

l "TopologyMap" on the next page

l "ChunkInfo" on the next page

CIs

CIs is a collection of CI elements.

ShallowRelation

A ShallowRelation is an entity that links two configuration items, composed of an ID, a type, and the
identifiers of the two items being linked (end1ID and end2ID). The relation type is the Type Name of
the CMDB class from which the relation is instantiated. The type can be any of the relation types
defined in the CMDB.

Topology

Topology is a graph of CI elements and relations. A Topology consists of a CIs collection and a
Relations collection containing one or more Relation elements.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 356 of 503

CINode

CINode is composed of a CIs collection with a label. The label in the CINode is the label defined in
the node of the TQL used in the query.

RelationNode

RelationNode is a set of Relation collections with a label. The label in the RelationNode is the
label defined in the node of the TQL used in the query.

TopologyMap

TopologyMap is the output of a query calculation that matches a TQL query. The labels in the
TopologyMap are the node labels defined in the TQL used in the query.

The data of TopologyMap is returned in the following form:

l CINodes. This is one or more CINode (see "CINode" above).

l relationNodes. This is one or more RelationNode (see "RelationNode" above).

The labels in these two structures order the lists of configuration items and relations.

ChunkInfo

When a query returns a large amount of data, the server stores the data, divided into segments called
chunks. The information the client uses to retrieve the chunked data is located in the ChunkInfo
structure returned by the query. ChunkInfo is composed of the numberOfChunks that must be retrieved
and the chunksKey. The chunksKey is a unique identifier of the data on the server for this specific query
invocation.

For more information, see "Processing Large Responses" on page 346.

UCMDB Query Methods
This section provides information on the followingmethods:

l "executeTopologyQueryByNameWithParameters" on the next page

l "executeTopologyQueryWithParameters " on page 359

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 357 of 503

l "getChangedCIs" on page 360

l "getCINeighbours" on page 361

l "getCIsByID" on page 361

l "getCIsByType" on page 362

l "getFilteredCIsByType " on page 363

l "getQueryNameOfView" on page 366

l "getTopologyQueryExistingResultByName" on page 367

l "getTopologyQueryResultCountByName" on page 367

l "pullTopologyMapChunks" on page 368

l "releaseChunks" on page 369

executeTopologyQueryByNameWithParameters

The executeTopologyQueryByNameWithParametersmethod retrieves a topologyMap element that
matches the specified parameterized query.

The values for the query parameters are passed in the parameterizedNodes argument. The specified
TQLmust have unique labels defined for each CINode and each relationNode or themethod
invocation fails.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

queryName The name of the parameterized TQL in the CMDB for which to get
themap.

parameterizedNodeList The conditions each nodemust meet to be included in the query
results.

queryTypedProperties A collection of sets of properties to retrieve for items of a specific
Configuration Item Type.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 358 of 503

Output

Parameter Comment

topologyMap For details, see "TopologyMap" on page 357.

chunkInfo For details, see "ChunkInfo" on page 357 and "Processing Large Responses" on
page 346.

executeTopologyQueryWithParameters

The executeTopologyQueryWithParametersmethod retrieves a topologyMap element that matches
the parameterized query.

The query is passed in the queryXML argument. The values for the query parameters are passed in the
parameterizedNodeList argument. The TQLmust have unique labels defined for each CINode and
each relationNode.

The executeTopologyQueryWithParametersmethod is used to pass ad hoc queries, rather than
accessing a query defined in the CMDB. You can use this method when you do not have access to the
UCMDB user interface to define a query, or when you do not want to save the query to the database.

To use an exported TQL as the input of this method, do the following:

1. Launch theWeb browser and enter the following address:
http://localhost:8443/jmx-console.

Youmay have to log in with a user name and password.

2. Click UCMDB:service=TQL Services.

3. Locate the exportTql operation.

o In the customerId parameter box, enter 1 (the default).

o In the patternName parameter box, enter a valid TQL name.

4. Click Invoke.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 359 of 503

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

queryXML An XML string representing a TQLwithout resource tags.

parameterizedNodeList The conditions each nodemust meet to be included in the query
results.

Output

Parameter Comment

topologyMap For details, see "TopologyMap" on page 357.

chunkInfo For details, see "ChunkInfo" on page 357 and "Processing Large Responses" on
page 346.

getChangedCIs

The getChangedCIsmethod returns the change data for all CIs related to the specified CIs.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

ids The list of the IDs of the root CIs whose related CIs are checked for changes. Only
real CMDB IDs are valid in this collection.

fromDate The beginning of the period in which to check if CIs changed.

toDate The end of the period in which to check if CIs changed.

Output

Parameter Comment

getChangedCIsResponseList Zero or more collections of ChangedDataInfo elements.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 360 of 503

getCINeighbours

The getCINeighboursmethod returns the immediate neighbors of the specified CI.

For example, if the query is on the neighbors of CI A, and CI A contains CI Bwhich uses CI C, CI B is
returned, but CI C is not. That is, only neighbors of the specified type are returned.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

ID The ID of the CI for which to retrieve the neighbors. This must be a real CMDB or
global ID.

neighbourType The CIT name of the neighbors to retrieve. Neighbors of the specified type and of
types derived from that type are returned. For details, see "Type Name" on
page 355.

CIProperties The data to be returned on each configuration item, called the Query Layout in
the user interface. For details, see "TypedProperties" on page 349.

relationProperties The data to be returned on each relation (called the Query Layout in the user
interface). For details, see "TypedProperties" on page 349.

Output

Parameter Comment

topology For details, see "Topology" on page 356.

comments For internal use only.

getCIsByID

The getCIsByIDmethod retrieves configuration items by their CMDB or global IDs.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 361 of 503

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

CIsTypedProperties A typed properties collection. For details, see "Other Property Specification
Elements" on page 348.

IDs Only real CMDB or global IDs are valid in this collection.

Output

Parameter Comment

CIs A collection of CI elements.

chunkInfo For details, see "ChunkInfo" on page 357 and "Processing Large Responses" on
page 346.

getCIsByType

The getCIsByTypemethod returns the collection of configuration items of the specified type and of all
types that inherit from the specified type.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

type The class name. For details, see "Type Name" on page 355.

properties The data to be returned on each configuration item. For details, see
"CustomProperties" on page 348.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 362 of 503

Output

Parameter Comment

CIs A collection of CI elements.

chunkInfo For details, see: "ChunkInfo" on page 357 and "Processing Large Responses" on
page 346.

getFilteredCIsByType

The getFilteredCIsByTypemethod retrieves the CIs of the specified type that meet the conditions
used by themethod. A condition is comprised of:

l A name field containing the name of a property

l An operator field containing a comparison operator

l An optional value field containing a value or list of values

Together, they form a Boolean expression:
<item>.property.value [operator] <condition>.value

For example, if the condition name is root_actualdeletionperiod, the condition value is 40 and the
operator is Equal, the Boolean statement is:

<item>.root_actualdeletionperiod.value = = 40

The query returns all items whose root_actualdeletionperiod is 40, assuming there are no other
conditions.

If the conditionsLogicalOperator argument is AND, the query returns the items that meet all
conditions in the conditions collection. If conditionsLogicalOperator is OR, the query returns the
items that meet at least one of the conditions in the conditions collection.

The following table lists the comparison operators:

Operator Type of Condition/Comments

ChangedDuring Date

This is a range check. The condition value is specified in hours. If the value of
the date property lies in the range of the time themethod is invoked plus or
minus the condition value, the condition is true.

For example, if the condition value is 24, the condition is true if the value of the

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 363 of 503

Operator Type of Condition/Comments

date property is between yesterday at this time and tomorrow at this time.

Note: The name ChangedDuring is kept to preserve backward
compatibility. In previous versions, the operator was used only with create
andmodify time properties.

Equal String and numerical

EqualIgnoreCase String

Greater Numerical

GreaterEqual Numerical

In String, numerical, and list

The condition's value is a list. The condition is true if the value of the property is
one of the values in the list.

InList List

The condition's value and the property's value are lists.

The condition is true if all the values in the condition's list also appear in the
item's property list. There can bemore property values than specified in the
condition without affecting the truth of the condition.

IsNull String, numerical, and list

The item's property has no value. When operator IsNull is used, the value of
the condition is ignored, and in some cases can be nil.

Less Numerical

LessEqual Numerical

Like String

The condition's value is a substring of the value of the property's value. The
condition's valuemust be bracketed with percentage signs (%). For example,
%Bi%matches Bismark and Bay of Biscay, but not biscuit.

LikeIgnoreCase String

Use the LikeIgnoreCase operator as you use the Like operator. Thematch,
however is not case-sensitive. Therefore, %Bi%matches biscuit.

NotEqual String and numerical

UnchangedDuring Date

This is a range check. The condition value is specified in hours. If the value of
the date property is in the range of the time themethod is invoked plus or minus

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 364 of 503

Operator Type of Condition/Comments

the condition value, the condition is false. If it lies outside that range, the
condition is true.

For example, if the condition value is 24, the condition is true if the value of the
date property is before yesterday at this time or after tomorrow at this time.

Note: The name UnchangedDuring is kept to preserve backward
compatibility. In previous versions, the operator was used only with create
andmodify time properties.

Example of Setting Up a Condition:

FloatCondition fc = new FloatCondition();
FloatProp fp = new FloatProp();
fp.setName("attr_name");
fp.setValue(11f);
fc.setCondition(fp);
fc.setFloatOperator(FloatCondition.FloatOperator.EQUAL);

Example of Querying for Inherited Properties:

The target CI is samplewhich has two attributes, name and size. sampleII extends the CI with
two attributes, level and grade. This example sets up a query for the properties of sampleII that
were inherited from sample by specifying them by name.

GetFilteredCIsByType request = new GetFilteredCIsByType()
request.setCmdbContext(cmdbContext)
request.setType("sampleII");
CustomProperties customProperties = new CustomProperties();
PropertiesList propertiesList = new PropertiesList();
propertiesList.setPropertyNames(Arrays.asList("name","size"));
customProperties.setPropertiesList(propertiesList);
request.setProperties(customProperties);

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

type The class name. For details, see "Type Name" on page 355. The type
can be any of the types defined using the CI TypeManager. For details,
see CI TypeManager in theUniversal CMDB Modeling Guide.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 365 of 503

Parameter Comment

properties The data to be returned on each CI (called the Query Layout in the user
interface). For details, see "CustomProperties" on page 348.

conditions A collection of name-value pairs and the operators that relate one to the
other. For example, host_hostname like QA.

conditionsLogicalOperator l AND. All the conditions must bemet.

l OR. At least one of the conditions must bemet.

Output

Parameter Comment

CIs Collection of CI elements.

chunkInfo For details, see "ChunkInfo" on page 357 and "Processing Large Responses" on
page 346.

getQueryNameOfView

The getQueryNameOfViewmethod retrieves the name of the TQL on which the specified view is based.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

viewName The name of a view, which is a sub-set of the class model in the CMDB.

Output

Parameter Comment

queryName The name of the TQL in the CMDB onwhich the view is based.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 366 of 503

getTopologyQueryExistingResultByName

The getTopologyQueryExistingResultByNamemethod retrieves themost recent result of running the
specified TQL. The call does not run the TQL. If there are no results from a previous run, nothing is
returned.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

queryName The name of a TQL.

queryTypedProperties A collection of sets of properties to retrieve for items of a specific
Configuration Item Type.

Output

Parameter Comment

topologyMap For details, see "TopologyMap" on page 357.

chunkInfo For details, see "ChunkInfo" on page 357 and "Processing Large Responses" on
page 346.

getTopologyQueryResultCountByName

The getTopologyQueryResultCountByNamemethod retrieves the number of instances of each node
that matches the specified query.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

queryName The name of a TQL.

countInvisible If true, the output includes CIs defined as invisible in the query.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 367 of 503

Output

Parameter Comment

getTopologyQueryResultCountByNameResponse The number of instances matching
the query.

pullTopologyMapChunks

The pullTopologyMapChunksmethod retrieves one of the chunks that contain the response to a
method.

Each chunk contains a topologyMap element that is part of the response. The first chunk is numbered
1, so the retrieval loop counter iterates from 1 to <response object>.getChunkInfo
().getNumberOfChunks().

For details, see "ChunkInfo" on page 357 and "Query the CMDB" on page 345.

The client applicationmust be able to handle the partial maps.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

ChunkRequest The number of the chunk to retrieve and the ChunkInfo that is returned by
the query method.

queryTypedProperties A collection of sets of properties to retrieve for items of a specific CI type.

Output

Parameter Comment

topologyMap For details, see "TopologyMap" on page 357.

comments For internal use only.

Example of Handling Chunks:

GetCIsByType request =
 new GetCIsByType(cmdbContext, typeName, customProperties);

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 368 of 503

GetCIsByTypeResponse response =
 ucmdbService.getCIsByType(request);
ChunkRequest chunkRequest = new ChunkRequest();
chunkRequest.setChunkInfo(response.getChunkInfo());
for(int j=1; j<=response.getChunkInfo().getNumberOfChunks(); j++){
 chunkRequest.setChunkNumber(j);
 PullTopologyMapChunks req =new PullTopologyMapChunks
(cmdbContext,chunkRequest);
 PullTopologyMapChunksResponse res =
 ucmdbService.pullTopologyMapChunks(req);
 for(int m=0 ;
 m < res.getTopologyMap().getCINodes().sizeCINodeList();
 m++) {
 CIs cis =
 res.getTopologyMap().getCINodes().getCINode(m).getCIs();
 for(int i=0 ; i < cis.sizeCIList() ; i++) {
 // your code to process the CIs
 }
 }
}

GetCIsByType request =
 new GetCIsByType(cmdbContext, typeName, customProperties);
GetCIsByTypeResponse response =
 ucmdbService.getCIsByType(request);
ChunkRequest chunkRequest = new ChunkRequest();
chunkRequest.setChunkInfo(response.getChunkInfo());
for(int j=1 ; j <= response.getChunkInfo().getNumberOfChunks() ; j++) {
 chunkRequest.setChunkNumber(j);
 PullTopologyMapChunks req = new PullTopologyMapChunks(cmdbContext,
chunkRequest);
 PullTopologyMapChunksResponse res =
 ucmdbService.pullTopologyMapChunks(req);
 for(int m=0 ;
 m < res.getTopologyMap().getCINodes().getCINodes().size();
 m++) {
 CIs cis =
 res.getTopologyMap().getCINodes().getCINodes().get(m).getCIs();
 for(int i=0 ; i < cis.getCIs().size(); i++) {
 // your code to process the CIs
 }
 }
}

releaseChunks

The releaseChunksmethod frees thememory of the chunks that contain the data from the query.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 369 of 503

Tip: The server discards the data after tenminutes. Calling this method to discard the data as
soon as it has been read conserves server resources.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

chunksKey The identifier of the data on the server that was chunked. The key is an element of
ChunkInfo.

UCMDB Update Methods
This section provides information on the followingmethods:

l "addCIsAndRelations" below

l "addCustomer" on the next page

l "deleteCIsAndRelations" on page 372

l "removeCustomer" on page 372

l "updateCIsAndRelations" on page 372

addCIsAndRelations

The addCIsAndRelationsmethod adds or updates CIs and relations.

If the CIs or relations do not exist in the CMDB, they are added and their properties are set according to
the contents of the CIsAndRelationsUpdates argument.

If the CIs or relations do exist in the CMDB, they are updated with the new data, if updateExisting is
true.

If updateExisting is false, CIsAndRelationsUpdates cannot reference existing configuration items
or relations. Any attempt to reference existing items when updateExisting is false results in an
exception.

If updateExisting is true, the add or update operation is performed without validating the CIs,
regardless of the value of ignoreValidation.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 370 of 503

If updateExisiting is false and ignoreValidation is true, the add operation is performed without
validating the CIs.

If updateExisiting is false and ignoreValidation is false, the CIs are validated before the add
operation.

Relations are never validated.

CreatedIDsMap is a map or dictionary of type ClientIDToCmdbID that connects the client's temporary
IDs with the corresponding real CMDB IDs.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

updateExisting Set to true to update items that already exist in the CMDB. Set to false
to throw an exception if any item already exists.

CIsAndRelationsUpdates The items to update or create. For details, see "Update the CMDB" on
page 349.

ignoreValidation If true, no check is performed before updating the CMDB.

dataStore Changer information.

Output

Parameter Comment

createdIDsMapList The list of client IDs mapped to CMDB IDs. For details, see the
description above.

comments For internal use only.

addCustomer

The addCustomermethod adds a customer.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 371 of 503

Input

Parameter Comment

CustomerID The numeric ID of the customer.

deleteCIsAndRelations

The deleteCIsAndRelationsmethod removes the specified configuration items and relations from the
CMDB.

When a CI is deleted and the CI is one end of one or more Relation items, those Relation items are
also deleted.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

CIsAndRelationsUpdates The items to delete. For details, see "Update the CMDB" on page 349

dataStore Changer information.

removeCustomer

The removeCustomermethod deletes a customer record.

Input

Parameter Comment

CustomerID The numeric ID of the customer.

updateCIsAndRelations

The updateCIsAndRelationsmethod updates the specified CIs and relations.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 372 of 503

Update uses the property values from the CIsAndRelationsUpdates argument. If any of the CIs or
relations do not exist in the CMDB, an exception is thrown.

CreatedIDsMap is a map or dictionary of type ClientIDToCmdbID that connects the client's temporary
IDs with the corresponding real CMDB IDs.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

CIsAndRelationsUpdates The items to update. For details, see "Update the CMDB" on page 349.

ignoreValidation If true, no check is performed before updating the CMDB.

dataStore Changer information.

Output

Parameter Comment

createdIDsMapList The list of client IDs mapped to CMDB IDs. For details, see
"addCIsAndRelations" on page 370.

UCMDB Impact Analysis Methods
This section provides information on the followingmethods:

l "calculateImpact" below

l "getImpactPath" on the next page

l "getImpactRulesByNamePrefix" on page 375

calculateImpact

The calculateImpactmethod calculates which CIs are affected by a given CI according to the rules
defined in the CMDB.

This shows the effect of an event triggering of the rule. The identifier output of calculateImpact is
used as input for "getImpactPath" on the next page.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 373 of 503

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

impactCategory The type of event that would trigger the rule being simulated.

IDs A collection of CMDB or global ID elements.

impactRulesNames A collection of ImpactRuleName elements.

severity The severity of the triggering event.

Output

Parameter Comment

impactTopology For details, see "Topology" on page 356.

identifier The key to the server response.

getImpactPath

The getImpactPathmethod retrieves the topology graph of the path between the affected CI and the
CI that affects it.

The identifier output of "calculateImpact" on the previous page is used as the identifier input
argument of getImpactPath.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

identifier The key to the server response that was returned by calculateImpact.

relation A Relation based on one of the "ShallowRelation"s returned by calculateImpact in
the impactTopology element.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 374 of 503

Output

Parameter Comment

impactPathTopology A CIs collection and an ImpactRelations collection.

comments For internal use only.

An ImpactRelations element consists of an ID, type, end1ID, end2ID, rule, and action.

getImpactRulesByNamePrefix

The getImpactRulesByNamePrefixmethod retrieves rules using a prefix filter.

This method applies to impact rules that are namedwith a prefix that indicates the context to which
they apply, for example, SAP_myrule, ORA_myrule, and so on. This method filters all impact rule names
for those beginning with the prefix specified by the ruleNamePrefixFilter argument.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

ruleNamePrefixFilter A string containing the first letters of the rule names tomatch.

Output

Parameter Comment

impactRules impactRules is composed of zero or more impactRule. An impactRule, which
specifies the effect of a change, is composed of ruleName, description,
queryName, and isActive.

Actual State Web Service API
The Actual StateWeb Service API is used primarily by the ServiceManager to retrieve Actual State
information for a specific CMDB ID or Global ID and a specific customer ID. The API finds amatching

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 375 of 503

query under the folder Integration/SM Query and executes the TQLwith the CMDB ID or Global ID as
a condition, and returns the output of the query.

Web Service URL: http://[machine_name]:8080/axis2/services/ucmdbSMService

Web Service Schema: http://[machine_name]:8080/axis2/services/ucmdbSMService?xsd=xsd0

Flow

When the API method is called, it tries to find an appropriate Query in the Integration/SM Query folder.
It tries to match the type of the requested CMDBID/GlobalID with one of the queries in the latter folder
first by looking for aQueryElementwith the nameRoot, and if one is not found it tries to use any
QueryNode of the same type as the requested CMDBID/GlobalID. Once an appropriate Query and
QueryNode are found, it puts the CMDBID/GlobalID as a condition on theQueryNode and executes
the Query. The result is then returned to the caller of the API.

Manipulating the Result Using Transformations

In some cases youmay want to apply additional transformations to the resulting XML (for example, to
sum up the sizes of all the disks and add that sum as an additional attribute to the CI). To add additional
transformations on the TQL results, place a resource called [tql_name].xslt in the adapter
configuration as follows: Adapter Management > ServiceDeskAdapter7-1 >Configuration Files >
[tql_name].xslt.

Logs for the Actual State Web Service API

The log configuration for UCMDB resides at: UCMDBServer/Conf/log in the various *.properties
files.

To view logs of the SM Actual State flow:

1. Open the cmdb_soaapi.properties file and change the log level to DEBUG as follows:
loglevel=DEBUG.

2. Open the fcmdb.properties file and change the log level to DEBUG as follows:
loglevel=DEBUG.

3. Wait 1 minute for the server to retrieve the changes.

4. Run the Actual State from the SM.

5. View the following log files at UCMDBServer/Runtime/log:

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 376 of 503

o cmdb.soaapi.log

o fcmdb.log

Enabling Actual State of Replicated CIs after Changing Root Context

If you have changed the root context that is used to access UCMDB, youmust make the following
configuration changes to enable Actual State of Replicated CIs:

1. UnderUCMDBServer\deploy\axis2\WEB-INF, open the fileweb.xml.

2. Add the following servlet init parameter to AxisServlet (paste these four lines after line 28):

<init-param>

<param-name>axis2.find.context</param-name>

<param-value>false</param-value>

</init-param>

This setting prevents Axis2 from trying to calculate the context root and tells it to look for it
explicitly in axis2.xml.

3. UnderUCMDBServer\deploy\axis2\WEB-INF\conf, open the file axis2.xml.

4. At line 58, remove comments from the parameter contextRoot, and edit it as follows:

<parameter name="contextRoot" locked="false">test/axis2</parameter>

(where test is the new root context in cmdb.xml).

Note: There is no slash at the beginning of test/axis2.

UCMDB Web Service API Use Cases
The following use cases assume two systems:

l Universal CMDB server

l A third-party system that contains a repository of configuration items

This section includes the following topics:

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 377 of 503

l "Populating the CMDB" below

l "Querying the CMDB" below

l "Querying the Class Model" below

l "Analyzing Change Impact" on the next page

Populating the CMDB

Use cases:

l A third-party asset management updates the CMDB with information available only in asset
management

l A number of third-party systems populate the CMDB to create a central CMDB that can track
changes and perform impact analysis

l A third-party system creates Configuration Items and Relations according to third-party business
logic to leverage the CMDB query capabilities

Querying the CMDB

Use cases:

l A third-party system gets the Configuration Items and Relations that represent the SAP system by
getting the results of the SAP TQL

l A third-party system gets the list of Oracle servers that have been added or changed in the last five
hours

l A third-party system gets the list of servers whose host name contains the substring lab

l A third-party system finds the elements related to a given CI by getting its neighbors

Querying the Class Model

Use cases:

l A third-party system enables users to specify the set of data to be retrieved from the CMDB. A user
interface can be built over the class model to show users the possible properties and prompt them
for required data. The user can then choose the information to be retrieved.

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 378 of 503

l A third-party system explores the class model when the user cannot access the UCMDB user
interface.

Analyzing Change Impact

Use case:

A third-party system outputs a list of the business services that could be impacted by a change on a
specified host.

Examples
See the following code samples:

l The Example Base Class

l Query Example

l Update Example

l Class Model Example

l Impact Analysis Example

These files are located in the following directory:

\\<UCMDB root directory>\hp\UCMDB\UCMDBServer\deploy\ucmdb-
docs\docs\eng\APIs\WebServiceAPI_Samples\

Developer ReferenceGuide
Chapter 11: Universal CMDBWeb Service API

Micro Focus Universal CMDB (10.33) Page 379 of 503

Chapter 12: Universal CMDB REST API
The Universal CMDB REST API allows you to perform topology modification and topology query
related operations.

Version 10.33 extended the way REST APIs are available in UCMDB, now REST APIs can also
operate based on global-ids. The request JSON of API methods now has a switch to determine
whether the request contains UCMDB IDs or global IDs. If the request contains global IDs, they would
be automatically converted to UCMDB IDs internally.

That is to say, as a UCMDB user, you can now query the UCMDB IDs or global IDs directly, and the
response time is improved (faster) compared to the previous version.

This chapter includes:
Deployment and Configuration 380

Using the REST API 382

Reference 393

Deployment and Configuration
The REST API can be deployed in the following ways:

l Embedded: The package is deployed on the UCMDB server. Since Universal CMDB 10.30, the
REST API is deployed automatically in this way when you install the UCMDB server.

l Standalone: The package is deployed on a separate Tomcat server.

Standalone Deployment

The standalone deployment of the REST API can work with UCMDB Server 10.10 and later versions.

You can obtain theWAR file for the REST API from the following locations:

l ITOMMarketplace

l UCMDB installation folder: <UCMDB_Server_Home>/tools/rest-api-standalone.war

Follow these steps to deploy the REST API on a separate Tomcat server:

Micro Focus Universal CMDB (10.33) Page 380 of 503

https://marketplace.microfocus.com/itom/content/community-content-ud-0

Note: Tomcat is the only supported servlet container.

1. Copy theWAR file to thewebapps directory of your Tomcat installation.

Note: It is recommended that you rename theWAR file to rest-api.war if you use theWAR
file from the UCMDB installation folder.

2. Create a rest_credentials.txt file under $CATALINA_HOME/conf/, and then specify the system
administrator credentials of the UCMDB Server. For example:

username=sysadmin
password=Sysadmin_123

3. Restart the Tomcat server.

Note: In the standalone deployment:

l The $CATALINA_HOME/conf/rest_jwt.bin file contains REST authorization information. If
you remove this file, all authorization tokens created from server startup will be invalidated.

l If you want to change the credentials that you specified during the deployment, delete the
$CATALINA_HOME/conf/rest_credentials.bin file, and then redo Step 2 and Step 3.

Configuration

The REST API can be configured by the rest_api.properties file, which is located in the following
folder:

l Embedded: <UCMDB_Server_Home>/conf/

l Standalone: $CATALINA_HOME/conf/

The available options and default values are as follows:

#hostname of ucmdb server
ucmdb_host=localhost
#protocol to be used when connecting to ucmdb server(http or https)
ucmdb_protocol=http
#port of ucmdb server
ucmdb_port=8080
#default ucmdb customer
default_customer=1

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 381 of 503

#rest authorization token lifespan
token_expiration_minutes=30

Note: If the rest_api.properties file is not present in the above location, the REST API uses
these default values.

For the embedded deployment, the REST API supports the HTTP and HTTPS protocols. You can
choose a protocol by changing the value of theRest-Api Port Mapping setting, which locates under
UCMDB UI > Administration > Infrastructure Settings Manager > Web Components to
Connectors.

For the standalone deployment, you can configure the REST API to run on HTTP or HTTPS by
following the Tomcat documentation.

Note:

l There is a global limit of 15 requests/second for all the REST endpoints.

All the REST endpoints for the Changes Repots (/changes/*) are limited to 5 concurrent
requests.

l Input dates checking validates the date interval that is sent to the rest-api/changeReports
endpoint, namely the dateFrom and dateTo fields of the request body:

o The dateTo field value can no longer occur 5 days after current time in the future.

o The dateFrom field value cannot occur after dateTo.

o The dateFrom field value cannot be longer than history.purging.months.to.save.back
(UCMDB setting, default value 3) months in the past.

Using the REST API
This chapter provides basic information about how to use the REST API.

Authorization

The REST API uses JSON Web Token (JWT) for authorization.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 382 of 503

You can obtain a token by making a POST REST call to the endpoint: <base_url>/authenticatewith
the payload that specifies the credentials and client context. The following example demonstrates the
content of such a payload:

{ "username": "admin", "password": "admin", "clientContext": 1 }

The service then returns a token that has to be used for future REST calls. The token should be added
in the header of a request in the followingmanner:

key: Authorization, value: Bearer TOKEN

TOKEN is the token returned by the authorization service.

Note: All REST calls require a token except the following ones:

l get sample datamodel

l get sample topology query

For an example about how to obtain a token, see "A Usage Example" on the next page.

REST API Endpoint

Youmust specify an endpoint when youmake a REST call. An endpoint includes the following parts:

<base_url><resource_url>

l <base_url>: The URL of where the REST API is deployed.

If you deploy the rest-api.war package under thewebapps folder of Tomcat, the base URL is:

http(s)://<IP_or_FQDN_of_Tomcat>/rest-api

l <resource_url>: See the URL section of each call in "Reference" on page 393.

Tips

l The logs produced by the REST API are in the following file:

o Embedded: <UCMDB_Server_Home>/runtime/log/rest_api.log

o Standalone: $CATALINA_HOME/logs/rest_api.log

l The REST API prints and consumes every date attribute in the ISO8601 format:

yyyy-MM-dd'T'HH:mm:ss.SSSZZ

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 383 of 503

A Usage Example

This example demonstrates how tomake a POST call to execute a TQL query by definition to return the
name of all CPUs of which the attribute contains Pentium.

Step 1. Retrieve the authentication token

To do this, make a POST call to https://localhost:8443/rest-api/authenticatewith the following
payload:

{
"username": "sysadmin",
"password": "Sysadmin?123",
"clientContext": 1
}

Note: This example assumes that the REST API is deployed at the following location:

https://localhost:8443/rest-api

You then receive a response that resembles the following:

Status: 200
Response body:
{
"token":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0NzQzNTc3MDYsImN1c3RvbWVyIjoxLC
J1c2VybmFtZSI6InN5c2FkbWluIn0.cVYsuum1CqaqfZV1K5KJ8nidOOif8Wv9tZsLFFZPbSs"
}

Step 2. Make a POST call to run the TQL query

Make a POST call to https://localhost:8443/rest-api/topologyQuerywith the following payload:

{
"nodes": [
{
"type": "cpu",
"queryIdentifier": "cpu1",
"visible": true,
"includeSubtypes": true,
"layout": ["name"],
"attributeConditions": [{

"attribute": "name",

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 384 of 503

"operator": "like",
"value": "%Pentium%"

}],
"linkConditions": []

}],
"relations": []
}

At the same time you need to set the following header:

Authorization Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0NzQzNTc3MDYsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.cVYsuum1CqaqfZV1K5KJ8nidOOif8Wv9tZsLFFZPbSs

Note: The payload specifies the layout attribute to name, so that the CPU namewill be returned.

Generate Customizable Change Report

Starting with version 10.32, the implementation of SDK API and REST API enables you to generate
customizable change report only for specific attributes, or to exclude specific attributes.

Overview

The customizable change reports contain attribute changes and current values. The reports can be
filtered to be generated only for specific CIs, and only for specific attributes of those CIs.

There are 3 ways in which the attribute changes can appear in the report:

l blacklist:Specify a list of attributes that are to be excluded from the report (that is, generate a
report for all attributes except the specified ones)

l whitelist:Specify a list of attributes that are to be used for the report (that is, generate a report
only for the specified attributes)

l all:Generate a report for all the attributes of the given CIs

There is one way in which attribute current values can appear in the report and that is by working with
the view definition andmodifying Report Layout.

Any attribute that is added to Report Layout appears on each CI in the generated report.

All the functionality is available both in form of REST endpoints, as well as SDK service.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 385 of 503

How to Use

SDK

To access this functionality, you can use theReportServicewhich can be retrieved by the
getReportService()method of UcmdbService.

TheReportService provides twomethods, generateChangeReportWithBlacklistFilter and
generateChangeReportWithWhitelistFilter. Both of them have the same arguments, but their
semantic differ, as explained in "Overview".

To achieve the "all attributes" mode, use the blacklist filter method with an empty list.

Example usage:

ReportService reportService = ucmdbService.getReportService();
List<String> attributes = new ArrayList<String>();

attributes.add("description");

Map<String, HistReport> stringHistReportMap =
reportService.generateChangeReportWithWhiteListFilter(new Date(1451642400000L),
new Date(1480079489763L), "viewName", attributes);

The change report is generated for the list of CIs that are coming as a result from executing the given
View. The View is specified by name, andmust be created prior to the execution of this API.

REST API

For the REST API endpoints and how to use them, see "Generate Change Report" on page 413.

Step By Step: How to Retrieve CIs Using REST API

This task includes the following steps:

1. Define Data

Define the data you want to retrieve from UCMDB. For example, “I want to retrieve all nodes”. To
achieve this, you need to create a new query which contains the CI types you are interested in.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 386 of 503

a. In UCMDB UI, go toModeling > Modeling Studio to model the data.

b. Click New > Query. A new Query modeling pane opens to theCI Types tab.

c. Just drag and drop into themodeling pane the CI types you are interested in.

d. Click Save .

The SaveQuery dialog pops up. Save the query with a name by providing the name (for
example, nodes_query) in theQuery Name field.

e. Return to theResources tab. You to see all the queries here, most of them are out-of-the-box
queries in a newly installed UCMDB.

f. Double-click the query you just created to open it. In this example, double-click nodes_query.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 387 of 503

g. In themodeling pane you can count the results of your query by clickingCalculate Query
Result Count .

Calculating the TQL query is a good practice since it allows you to know that it has results.

As you can see there exists two nodes.

2. Make REST calls and retrieve CIs

a. Define two requests in SoapUI:

i. One to authenticate which gives you back an authentication token

ii. Another one to retrieve query results.

The second request uses response from the first one to authenticate.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 388 of 503

JSON response of the first request will look like this:

{"token":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJyZXBvc2l0b3J5IjoiVUNNREIiLCJleH
AiOjE1MDA0NTc0NDIsImN1c3RvbWVyIjoxLCJ1c2VybmFtZSI6InN5c2FkbWluIn0.6SO434
meWazmfsOoSd-fXFaTFDx9QomOadalrgPpp8s"}

You can extract the token value from the response above and put it along with the “Bearer”
keyword into theAuthorization header of the second request.

Header value would look like: Bearer <token_value>

As you can see in the screenshot below:

Note: There is a space between the keyword and the token value.

Now you canmake authenticated REST requests to UCMDB.

b. Write the TQL query name into themessage body.

In the image above you also have the response which contains two CIs without any
properties.

3. Additional properties knowledge base

a. If you also want to see CIs' properties, go back to theResources tab and double-click your

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 389 of 503

query: nodes_query

b. Select the CI in themodeling pane, then in the CI properties pane, go to theElement Layout

tab and click Edit .

TheQuery Node Properties dialog opens.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 390 of 503

c. Select the check box forSelect attributes for layout.

In theCI Types pane you can see your node type and all its subtypes. You can have different
subtypes returning different attributes. In this example, let us stick to themain flow.

d. Select Specific Attributes from theAttributes condition drop-down list, and then add the
attributes you want to see in the result to theSpecific Attributes tab.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 391 of 503

e. Click OK to save the changes.

f. Click Save to save the TQL query.

g. Now if you go back to your SoapUI andmake the same request again with the same query
name, you can also see the attributes.

They appear in the response if they have a value.

Note: Attention at how many attributes you add to your query. Each attribute you add will
take processing power. The performance is inversely proportional with the number of
attributes. If you are working with a light amount of data, you will barely see a difference. But
when you have likemillions of CIs, it will matter.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 392 of 503

Advanced Query Features

Query node can also have condition on different kind of properties, so just specific instances of some
CI types appear depending on the created conditions.

TQL queries are composed of nodes and relations, in real world entities havemany different kind of
relations with other entities, and you can also query those types of structures.

In addition to themain feature described here, there aremore advanced features available with
UCMDB.

Reference
This chapter provides detailed information on how tomake the following calls through the REST API:

Authenticate 394

Sample DataModel 396

Insert Topology 399

Get CI 403

Update CI 406

Delete CI 410

Generate Change Report 413

Get Related CIs 418

Get Relation 421

Update Relation 425

Delete Relation 428

Sample Topology Query 431

Execute Query By Name 434

Execute Query By Definition 437

Run Impact Analysis 443

Multiple CMDB Calls 446

History Changes 451

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 393 of 503

Authenticate

This call returns a token based on user credentials. The returned token has to be used in the following
calls.

URL

/authenticate

Method

POST

Headers

None

Request type

JSON

Response type

JSON

URL Parameters

Required: None

Optional: None

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 394 of 503

Payload

{
username: [string],
password: [string],
clientContext: [integer] @optional @ignored

}

Example:

{
username: sysadmin,
password: sysadmin,
clientContext: 1

}

Success response

Code: 200

Content: <token>

Example:

Code: 200

Content:

{
"token":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0NzQzNTc3MDYsImN1c3RvbWVyIjoxLC
J1c2VybmFtZSI6InN5c2FkbWluIn0.cVYsuum1CqaqfZV1K5KJ8nidOOif8Wv9tZsLFFZPbSs"
}

Error response

Code: 401

Content:

{

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 395 of 503

error: [string]
}

Example:

Code: 401

Content:

{
error: The following error has occurred: Invalid username received. Please

consult logs for more details
}

Notes

The user needs access to SDK permission.

Sample Data Model

This call returns an example of datamodel structure that will be used in Data-In operations.

URL

/sampleDataModel

Method

GET

Headers

None

Request type

None

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 396 of 503

Response type

JSON

URL Parameters

Required: None

Optional: None

Payload

None

Success response

Hardcoded response:

{
"cis": [

{
"ucmdbId": "1",
"type": "unix",
"properties": {

"stringList": [
"multiple",
"string",
"items"

],
"name": "unix1"

}
},
{

"ucmdbId": "2",
"type": "running_software",
"properties": {

"discovered_product_name": "rs1",
"intList": [

"1",
"2",

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 397 of 503

"3"
],
"name": "rs1"

}
},
{

"ucmdbId": "3",
"type": "running_software",
"properties": {

"discovered_product_name": "rs2",
"name": "rs2"

}
}

],
"relations": [

{
"ucmdbId": "r1",
"type": "composition",
"properties": null,
"end1Id": "1",
"end2Id": "2"

},
{

"ucmdbId": "r2",
"type": "composition",
"properties": null,
"end1Id": "1",
"end2Id": "3"

},
{

"ucmdbId": "r3",
"type": "consumer_provider",
"properties": null,
"end1Id": "2",
"end2Id": "3"

}
]

}

Error response

None

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 398 of 503

Insert Topology

This call creates entities as described by the payload.

URL

/dataModel

Method

POST

Headers

Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type

JSON

Response type

JSON

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 399 of 503

URL Parameters

Required: None

Optional: None

Payload

{
cis: [
{
ucmdbId: [temp_id],
type: [ucmdb_cit],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

}
},
…

],
relations: [
{
ucmdbId: [temp_id],
type: [ucmdb_cit],
end1Id: [temp_id],
end2Id: [temp_id],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

}
},
…

]
}

Note: The …(three dots) denotes that there can be 0 or more values.

Data Types:

[temp_id]

The string that represents a temporary ID of the objects. This temporary ID can be used for referring to
the object inside this payload. For example, you can specify the two ends of a relationship, if you want
to use an object that was defined in the same payload, use the object’s temporary ID.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 400 of 503

[ucmdb_cit]

The string that represents the name of a valid CI Type from the UCMDB. You have to use the name of
the CI Type, not the display name. The name of the CI Type can be found inside the CI TypeManager.

[ucmdb_cit_prop_value]

The property value, which can be integer, string, Boolean, long, double, ISO8601 date, or a list of
values depending on the CIT property data type.

Custom fields:

<ucmdb_cit_prop>

The valid property name of the CI Type. You can get the name and the list of all properties of a CI Type
from the CI TypeManager. You have to use the name of the property, not its display name.

Example:

{
cis: [{

ucmdbId: 1,
type: node,
properties: {

name: Test1
}

}, {
ucmdbId: 2,
type: node,
properties: {

name: Test2
}

}],
relations: [{

ucmdbId: 3,
type: managed_relationship,
end1Id: 1,
end2Id: 2,
properties: {
}

}]
}

Success response

Code: 200

Content:

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 401 of 503

{
addedCis: list of [ucmdb_id]
removedCis: list of [ucmdb_id],
updatedCis: list of [ucmdb_id],
ignoredCis: list of [ucmdb_id]

}

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a configuration item.

Example:

Code: 200

Content:

{
addedCis: [

4dc01bee04c76cc0ac4bb069f46e8b56,
4b8416a13e686092b2a2e142ecceff46

],
removedCis: [],
updatedCis: [],
ignoredCis: []

}

Error response

Code: 400

Content:

{
error: [string]

}

Example:

Code: 400

Content:

{

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 402 of 503

error: The following error has occurred: Class "nodeo" is not defined in the
class model. Please consult logs for more details
}

Note

The user that the token belongs tomust have the required permissions for modifying the data inside
UCMDB through the SDK.

Get CI

This call returns details of a CI.

URL

/dataModel/ci/{id}

Method

GET

Headers

Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 403 of 503

Request type

None

Response type

JSON

URL Parameters

Path Parameters

Required:

{id}: [ucmdb_id]

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a configuration item.

Payload

None

Call example

GET <base_url>/dataModel/ci/4dc01bee04c76cc0ac4bb069f46e8b56

Success response

Status: 200

Response:

{

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 404 of 503

ucmdbId: [ucmdb_id],
type: [ucmdb_cit],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

}
}

Note: The …(three dots) denotes that there can be 0 or more values.

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a CI.

[ucmdb_cit]

The string that represents the name of a valid CI Type from the UCMDB.

[ucmdb_cit_prop_value]

The property value, which can be integer, string, Boolean, long, double, ISO8601 date, or a list of
values depending on the CIT property data type.

Custom fields:

<ucmdb_cit_prop>

The valid property name of the CI Type. You can get the name and the list of all properties of a CI Type
from the CI TypeManager.

Example:

Status: 200

Response:

{
ucmdbId: 4dc01bee04c76cc0ac4bb069f46e8b56,
type: node,
properties: {
root_candidatefordeletetime: 2016-07-31T08:41:54.189Z,
data_operationisnew: false,
root_class: node,
display_label: test2,
data_operationstate: 0:Normal,
data_allow_auto_discovery: true,

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 405 of 503

}
}

Error response

Status: 404 or 400

Content:

{
error: [string]

}

Example:

Code: 404

Content:

{
error: The following error has occurred: The CI with the specified id was

not found. Please consult logs for more details
}

Note

The user that the token belongs tomust have the required permissions for viewing the data inside
UCMDB through the SDK.

Update CI

This call updates the details of a CI.

URL

/dataModel/ci/{id}

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 406 of 503

Method

PUT

Headers

Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type

JSON

Response type

JSON

URL Parameters

Path Parameters

Required:

{id}: [ucmdb_id]

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a configuration item.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 407 of 503

Payload

{
ucmdbId: [ucmdb_id],
type: [ucmdb_cit],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

}
}

Note:

l The …(three dots) denotes that there can be 0 or more values.

l You have to specify only the properties that you want to update. Do not specify all properties of
the CI.

l You cannot update the type or the ID of the CI.

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a CI.

[ucmdb_cit]

The string that represents the name of a valid CI Type from the UCMDB.

[ucmdb_cit_prop_value]

The property value, which can be integer, string, Boolean, long, double, ISO8601 date, or a list of
values depending on the CIT property data type.

Custom fields:

<ucmdb_cit_prop>

The valid property name of the CI Type. You can get the name and the list of all properties of a CI Type
from the CI TypeManager.

Example:

{
ucmdbId: 4dc01bee04c76cc0ac4bb069f46e8b56,

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 408 of 503

type: node,
properties: {
root_candidatefordeletetime: 2016-07-31T08:41:54.189Z,
data_operationisnew: false,
root_class: node,
display_label: test2,
data_operationstate: 0:Normal,
data_allow_auto_discovery: true,

}
}

Success response

Status: 200

Response:

{
addedCis: list of [ucmdb_id]
removedCis: list of [ucmdb_id],
updatedCis: list of [ucmdb_id],
ignoredCis: list of [ucmdb_id]

}

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a CI.

Example:

Code: 200

Content:

{
addedCis: [],
removedCis: [],
updatedCis: [

4b8416a13e686092b2a2e142ecceff46
],
ignoredCis: []

}

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 409 of 503

Error response

Status: 404 or 400

Content:

{
error: [string]

}

Example:

Code: 404

Content:

{
error: The following error has occurred: The CI with the specified id was

not found. Please consult logs for more details
}

Note

The user that the token belongs tomust have the required permissions for updating the data inside
UCMDB through the SDK.

Delete CI

This call deletes a CI.

URL

/dataModel/ci/{id}

Method

DELETE

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 410 of 503

Headers

Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type

None

Response type

JSON

URL Parameters

Path Parameters

Required:

{id}: [ucmdb_id]

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a configuration item.

Payload

None

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 411 of 503

Success response

Code: 200

Response:

{
addedCis: list of [ucmdb_id]
removedCis: list of [ucmdb_id],
updatedCis: list of [ucmdb_id],
ignoredCis: list of [ucmdb_id]

}

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a CI.

Example:

Code: 200

Response:

{
addedCis: [],
removedCis: [

4b8416a13e686092b2a2e142ecceff46
],
updatedCis: [],
ignoredCis: []

}

Error response

Status: 404 or 400

Content:

{
error: [string]

}

Example:

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 412 of 503

Code: 404

Content:

{
error: The following error has occurred: The CI with the specified id was

not found. Please consult logs for more details
}

Note

The user that the token belongs tomust have the required permissions for deleting the data inside
UCMDB through the SDK.

Generate Change Report

This call generate a change report about the attributes of the given CIs.

URL

changeReports/generate/blacklist

changeReports/generate/whitelist

changeReports/generate/all

Method

POST

Headers

Required:

Authorization: Bearer <token>

Note: <token> is the token that was returned by the Authentication call.

Example:

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 413 of 503

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type

JSON

Response type

JSON

URL Parameters

Required:

none

Optional:

none

Payload

There are three cases for each of the URLs above:

Case 1:Requesting the following JSON to <host>/rest-api/changeReports/generate/blacklist

{
"dateFrom": "1454364000000",
"dateTo" : "1485986400000",
"viewName": "yourView",
"attributes": ["description","name "]

}

generates a report that contains no information about the attributes written in list "attributes".

Case 2:Requesting the following Json to <host>/rest-api/changeReports/generate/whitelist

{

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 414 of 503

"dateFrom": "1454364000000",
"dateTo" : "1485986400000",
"viewName": "yourView",
"attributes": ["description","name "]

}

generates a report that contains information just about the attributes written in list "attributes".

Case 3:Requesting the following JSON to <host>/rest-api/changeReports/generate/all

{
"dateFrom": "1454364000000",
"dateTo" : "1485986400000",
"viewName": "yourView",

}

generates a report that contains information about all attributes.

Note: Details about attributes:

dateFrom represents the date from which changes of attributes should be taken into consideration
at the generated report.

dateTo represents the limit date to which changes of attributes should be taken into consideration
at the generated report.

viewName is a view that has as result someCIs on which report will be based on.

attributes is a list of attributes which should or should not appear in the generated report.

Success response

Code: 200

Content: has twomain objects

changes represent all the changes to the found CIs

{

"changes":{
"<ci-id>":{

"ciId":"<ci-id>",
"displayLabel":"<display-label>",
"className":"class-name>",

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 415 of 503

"properties": [
{
"name": "name",
"value": "value"
},
{
"name": "name",
"value": "value"
}
],
"changes":{

"<attribute-name>":[
{

"attribute":"<attribute-name>",
"oldValue":"<attribute-old-value>",
"newValue":"<attribute-new-value>",
"changer":"<changer>",
"changeDate":"<date-of-change>"

},
{

"attribute":"<attribute-name>",
"oldValue":"<attribute-old-value>",
"newValue":"<attribute-new-value>",
"changer":"<changer>",
"changeDate":"<date-of-change>"

},

...

],

"<attribute-name>":[
{

"attribute":"<attribute-name>",
"oldValue":"<attribute-old-value>",
"newValue":"<attribute-new-value>",
"changer":"<changer>",
"changeDate":"<date-of-change>"

},
{

"attribute":"<attribute-name>",
"oldValue":"<attribute-old-value>",
"newValue":"<attribute-new-value>",
"changer":"<changer>",
"changeDate":"<date-of-change>"

},

...

]

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 416 of 503

}

},

...

},

}

Example:

{
"changes":{

"4278e81d3dd6640a835e419d2865905d":{
"ciId":"4278e81d3dd6640a835e419d2865905d",
"displayLabel":"create222",
"className":"node",
"properties": [

{
"name": "Display Label",
"value": "USER LABEL"
},
{
"name": "Create Time",
"value": "Fri Jan 20 14:13:40 EET 2017"
},
{
"name": "Description",
"value": "description"
}
],

"changes":{
"name":[

{
"attribute":"name",
"oldValue":"create2",
"newValue":"create22",
"changer":"User:{UISysadmin###UCMDB},LoggedInUser:{admin###UCMDB}",
"changeDate":1484741091500

}
]

}
}

},
}

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 417 of 503

Error response

none

Get Related CIs

This call returns the details of the CIs related to the specified CI.

URL

/dataModel/relatedCI/{id}

Method

GET

Headers

Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type

None

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 418 of 503

Response type

JSON

URL Parameters

Path Parameters

Required:

{id}: [ucmdb_id]

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a configuration item.

Payload

None

Success response

Response: 200

Content:

{
cis: [
{
ucmdbId: [ucmdb_id],
type: [ucmdb_cit],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

}
},
…

],
relations: [

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 419 of 503

{
ucmdbId: [ucmdb_id],
type: [ucmdb_cit],
end1Id: [ucmdb_id],
end2Id: [ucmdb_id],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

}
},
…

]
}

Note: The …(three dots) denotes that there can be 0 or more values.

Data Types:

[ucmdb_id]

The string that represents the ID of an object.

[ucmdb_cit]

The string that represents the name of a valid configuration item type from the UCMDB. The name of
the CI Type can be found inside the CI TypeManager.

[ucmdb_cit_prop_value]

The property value, which can be integer, string, Boolean, long, double, ISO8601 date, or a list of
values depending on the CIT property data type.

Custom fields:

<ucmdb_cit_prop>

The valid property name of the CI Type. You can get the name and the list of all properties of a CI Type
from the CI TypeManager.

Error response

Status: 404 or 400

Content:

{

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 420 of 503

error: [string]
}

Example:

Code: 404

Content:

{
error: The following error has occurred: The CI with the specified id was

not found. Please consult logs for more details
}

Note

The user that the token belongs tomust have the required permissions for viewing the data inside
UCMDB through the SDK.

Get Relation

This call returns the details of a relation.

URL

/dataModel/relation/{id}

Method

GET

Headers

Required:

Authorization: Bearer <token>

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 421 of 503

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type

None

Response type

JSON

URL Parameters

Path Parameters

Required:

{id}: [ucmdb_id]

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a relation.

Payload

None

Call example

GET <base_ulr>/dataModel/relation/464106e644e5d86daea003a2cbbc648f

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 422 of 503

Success response

Status: 200

Response:

{
ucmdbId: [ucmdb_id],
type: [ucmdb_cit],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

},
end1Id: [ucmdb_id],
end2Id: [ucmdb_id]

}

Note: The …(three dots) denotes that there can be 0 or more values.

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a relation.

[ucmdb_cit]

The string that represents the name of a valid relation type from the UCMDB.

[ucmdb_cit_prop_value]

The property value, which can be integer, string, Boolean, long, double, ISO8601 date, or a list of
values depending on the CIT property data type.

Custom fields:

<ucmdb_cit_prop>

The valid property name of the relation type. You can get the name and the list of all properties of a
relation from the CI TypeManager.

Example:

Status: 200

Response:

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 423 of 503

{
ucmdbId: 464106e644e5d86daea003a2cbbc648f,
type: composition,
properties: {
root_candidatefordeletetime: 2016-07-31T08:41:54.189Z,
data_operationisnew: false,
root_class: node,
display_label: test2,
data_operationstate: 0:Normal,
data_allow_auto_discovery: true,

},
end1Id: 4c558e88e6910f6ebf642c9e07be8426,
end2Id: 4a2a4387a61951a1ba1b2b5338930985

}

Error response

Status: 404 or 400

Content:

{
error: [string]

}

Example:

Code: 404

Content:

{
error: The following error has occurred: Relation with specified ID was not

found. Please consult logs for more details
}

Note

The user that the token belongs tomust have the required permissions for viewing the data inside
UCMDB through the SDK.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 424 of 503

Update Relation

This call updates the details of a relation.

URL

/dataModel/relation/{id}

Method

PUT

Headers

Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type

JSON

Response type

JSON

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 425 of 503

URL Parameters

Path Parameters

Required:

{id}: [ucmdb_id]

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a relation.

Payload

{
ucmdbId: [ucmdb_id],
type: [ucmdb_cit],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

},
end1Id: [ucmdb_id],
end2Id: [ucmb_id]

}

Note:

l The … (three dots) denotes that there can be 0 or more values.

l You have to specify only the properties that you want to update. Do not specify all properties of
the relation.

l You cannot update the type, id, end1 and end2 of a relationship.

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a relation.

[ucmdb_cit]

The string that represents the name of a valid relation type from the UCMDB.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 426 of 503

[ucmdb_cit_prop_value]

The property value, which can be integer, string, Boolean, long, double, ISO8601 date, or a list of
values depending on the CIT property data type.

Custom fields:

<ucmdb_cit_prop>

The valid property name of the relation type. You can get the name and the list of all properties of a
relation from the CI TypeManager.

Example:

{
ucmdbId : 464106e644e5d86daea003a2cbbc648f,
type : composition,
properties: {

root_enableageing: true
},
end1Id: 4c558e88e6910f6ebf642c9e07be8426,
end2Id: 4a2a4387a61951a1ba1b2b5338930985

}

Success response

Code: 200

Response:

{
addedCis: list of [ucmdb_id]
removedCis: list of [ucmdb_id],
updatedCis: list of [ucmdb_id],
ignoredCis: list of [ucmdb_id]

}

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a relation.

Example:

Code: 200

Content:

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 427 of 503

{
addedCis: [],
removedCis: [],
updatedCis: [

464106e644e5d86daea003a2cbbc648f
],
ignoredCis: []

}

Error response

Status: 404 or 400

Content:

{
error: [string]

}

Example:

Code: 404

Content:

{
error: The following error has occurred: Relation with specified ID was not

found. Please consult logs for more details
}

Note

The user that the token belongs tomust have the required permissions for updating the data inside
UCMDB through the SDK.

Delete Relation

This call deletes a relation.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 428 of 503

URL

/dataModel/relation/{id}

Method

DELETE

Headers

Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type

None

Response type

JSON

URL Parameters

Path Parameters

Required:

{id}: [ucmdb_id]

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 429 of 503

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a relation.

Payload

None

Success response

Code: 200

Response:

{
addedCis: list of [ucmdb_id]
removedCis: list of [ucmdb_id],
updatedCis: list of [ucmdb_id],
ignoredCis: list of [ucmdb_id]

}

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a relation.

Example:

Code: 200

Content:

{
addedCis: [],
removedCis: [

464106e644e5d86daea003a2cbbc648f
],
updatedCis: [],
ignoredCis: []

}

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 430 of 503

Error response

Status: 404 or 400

Content:

{
error: [string]

}

Example:

Code: 404

Content:

{
error: The following error has occurred: Relation with specified ID was not

found. Please consult logs for more details
}

Note

The user that the token belongs tomust have the required permissions for deleting the data inside
UCMDB through the SDK.

Sample Topology Query

This call returns an example of the structure of an ad hoc TQL query. This structure can be used for
future query related calls.

URL

/sampleToplogyQuery

Method

GET

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 431 of 503

Headers

None

Request type

None

Response type

JSON

URL Parameters

Required:None

Optional:None

Payload

None

Success response

Hardcoded response:

{
"nodes": [

{
"linkConditions": [

{
"linkIdentifier": "link",
"minCardinality": "2",
"maxCardinality": "*"

}
],

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 432 of 503

"type": "node",
"queryIdentifier": "node1",
"visible": true,
"includeSubtypes": true,
"layout": [

"ucmdb_id",
"name"

],
"attributeConditions": [

{
"attribute": "name",
"value": "node1"

},
{

"attribute": "memory",
"operator": "greaterThan",
"value": "2"

},
{

"attribute": "ala",
"operator": "isNull"

}
],
"ids": []

},
{

"type": "node",
"queryIdentifier": "node2",
"visible": true,
"includeSubtypes": true,
"layout": [

"ucmdb_id",
"name"

],
"attributeConditions": [

{
"logicalOperator": "or",
"conditions": [

{
"attribute": "name",
"operator": "in",
"value": [

"node1",
"node2"

]
},
{

"attribute": "memory",

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 433 of 503

"operator": "lessThan",
"value": "2"

},
{

"logicalOperator": "or",
"conditions": [

{
"attribute": "name",
"operator": "equals",
"value": "node1"

},
{

"attribute": "memory",
"operator": "greaterThan",
"value": "2"

}
]

}
]

}
],
"ids": []

}
],
"relations": [

{
"type": "composition",
"queryIdentifier": "link",
"visible": true,
"includeSubtypes": false,
"from": "node1",
"to": "node2"

}
]

}

Error response

None

Execute Query By Name

This call executes a TQL query by the name it is already saved with.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 434 of 503

URL

/topology

Method

POST

Headers

Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type

JSON

Response type

JSON

URL Parameters

Required:None

Optional:None

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 435 of 503

Payload

<tql_name>: string

The payload contains only the name of the TQL to be executed.

Success response

Response: 200

Content:

{
cis: [
{
ucmdbId: [ucmdb_id],
type: [ucmdb_cit],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

}
},
…

],
relations: [
{
ucmdbId: [ucmdb_id],
type: [ucmdb_cit],
end1Id: [ucmdb_id],
end2Id: [ucmdb_id],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

}
},
…

]
}

Note: The …(three dots) denotes that there can be 0 or more values.

Data Types:

[ucmdb_id]

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 436 of 503

The string that represents the ID of an object.

[ucmdb_cit]

The string that represents the name of a valid CI Type from the UCMDB. The name of the CI Type can
be found inside the CI TypeManager.

[ucmdb_cit_prop_value]

The property value, which can be integer, string, Boolean, long, double, ISO8601 date, or a list of
values depending on the CIT property data type.

Custom fields:

<ucmdb_cit_prop>

The valid property name of the CI Type. You can get the name and the list of all properties of a CI Type
from the CI TypeManager. You have to use the name of the property, not its display name.

Error response

Status: 500

Content:

{
error: [string]

}

Note

The user that the token belongs tomust have the required permissions for executing the TQL query.

Execute Query By Definition

This call executes a TQL query defined by the payload.

URL

/topologyQuery

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 437 of 503

Method

POST

Headers

Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type

JSON

Response type

JSON

URL Parameters

Required:None

Optional:None

Payload

{

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 438 of 503

nodes: [
queryIdentifier: [temp_id],
type: [ucmdb_cit],
visible: [boolean],
includeSubtypes: [boolean],
layout: list of [ucmdb_cit_prop],
attributeConditions: [

{
attribute: [ucmdb_cit_prop],
operator: [operator] @optional,
value: [ucmdb_cit_prop_value],
not: [boolean] @optional default=false

},
{
logicalOperator: [logic_operator] @optional default=and,
conditions: list of [attributeConditions]

},
…

],
ids: list of [ucmdb_id],
linkConditions: [

{
linkIdentifier: [temp_id],
minCardinality: [cardinality],
maxCardinality: [cardinality]

},

{
logicalOperator: [logic_operator] @optional default=and,
conditions: list of [linkCondition]

},
…

]
},
…
],
relations: [
{
queryIdentifier: [temp_id],
type: [ucmdb_cit],
visible: [boolean],
includeSubtypes: [boolean],
layout: list of [ucmdb_cit_prop],
attributeCondtitions: list of [attributeCondition],
from: [temp_id],
to: [temp_id]
},
…

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 439 of 503

]
}

Note:

l The …(three dots) denotes that there can be 0 or more values.

l The visible attribute above specifies whether to return this node in the results.

l The includeSubtypes attribute specifies whether to include the subtypes of this node type.

l The layout attribute specifies which attributes of the objects will be returned (default: none).

l The attributeConditions attribute specifies conditions on the properties of the objects or
relationships. You can use simple attributes (name, operator, or value) or complex attributes (a
logical operator and a list of attributes that are joined by that logical operator).

l The linkConditions attribute specifies conditions on the links that the object participates into.
You need to specify the link’s temporary ID and the cardinality. You can also use complex
conditions that aremade of a logical operator and a list of conditions.

l The not property on the conditions specifies whether to negate the condition. If this property is
unspecified, the default value is false.

Data Types:

[temp_id]

The string that represents a temporary ID of the objects. This temporary ID can be used for referring to
the object inside this payload. For example, you can specify the two ends of a relationship, if you want
to use an object that was defined in the same payload, use the object’s temp ID.

[ucmdb_cit]

The string that represents the name of a valid CI Type from the UCMDB. You have to use the name of
the CI Type, not the display name. The name of the CI Type can be found inside the CI TypeManager.

<ucmdb_cit_prop>

This represents the valid property name of the CI Type. You can get the name and the list of all
properties of a CI Type from the CI TypeManager.

[operator]

One of the following strings: isNull, equals, isNotEqualTo, like, greaterThan,
greaterThanOrEqual, lessThan, lessThanOrEqual, in, containsAny, contains. If this is
unspecified, the default value is equals.

[ucmdb_cit_prop_value]

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 440 of 503

The property value, which can be integer, string, Boolean, long, double, ISO8601 date, or a list of
values depending on the CIT property data type.

[logic_operator]

The string that represents a logic operator, which can be "and" or "or".

[cardinality]

The string that represents the cardinality of a relationship end, which can be a number, *, or UNBOUNDED.

Example:

See the output of GET /sampleToplogyQuery.

Success response

Response: 200

Content:

{
cis: [
{
ucmdbId: [ucmdb_id],
type: [ucmdb_cit],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

}
},
…

],
relations: [
{
ucmdbId: [ucmdb_id],
type: [ucmdb_cit],
end1Id: [ucmdb_id],
end2Id: [ucmdb_id],
properties: {
<ucmdb_cit_prop>: [ucmdb_cit_prop_value],
…

}
},
…

]
}

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 441 of 503

Note: The …(three dots) denotes that there can be 0 or more values.

Data Types:

[ucmdb_id]

The string that represents the ID of an object.

[ucmdb_cit]

The string that represents the name of a valid CI Type from the UCMDB. The name of the CI Type can
be found inside the CI TypeManager.

[ucmdb_cit_prop_value]

The property value, which can be integer, string, Boolean, long, double, ISO8601 date, or a list of
values depending on the CIT property data type.

Custom fields:

<ucmdb_cit_prop>

The valid property name of the CI Type. You can get the name and the list of all properties of a CI Type
from the CI TypeManager. You have to use the name of the property, not its display name.

Error response

Status: 400

Content:

{
error: [string]

}

Example:

Code: 400

Content:

{
error: The following error has occurred: Class "nodeo" is not defined in the

class model. Please consult logs for more details
}

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 442 of 503

Note

The user that the token belongs tomust have the required permissions for executing TQL queries by
definition through the SDK.

Run Impact Analysis

This call runs an impact analysis with a given definition.

URL

/impactAnalysis

Method

POST

Headers

Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type

JSON

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 443 of 503

Response type

JSON

URL Parameters

Required: None

Optional: None

Payload

{
"triggerCIs": [
{
"triggerId": [ucmdb_id],
"severity": [severity]

},
...

],
"properties": ["name","label',...],
"bundles": ["bundle1","bundle2",...]

}

Configure the payload's parameters as follows:

l "bundles". (Optional) Specify the bundles of rules used to run the analysis. If you do not specify a
list of bundles, all bundles are used by default.

l "properties". (Optional) Specify the properties to be fetched for each affected CI that is identified
by the impact analysis (as an array of strings - names). If not specified, no extra property will be
fetched. The CI type and the UCMDB ID are fetched by default.

l "triggerCIs". Specify the CIs that are triggered for this impact analysis (as an array of trigger CIs).
At least one trigger CI should be specified. Each trigger CI has two fields:

o "triggerId". [ucmdb_id]

The string that represents the CI's ID in UCMDB.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 444 of 503

o "severity". [severity]

The string that represents the severity at which the trigger CI is affected.

Note:

l To check the available [severity] levels, see the output of GET /impactAnalysis/severities.

l The …(three dots) denotes that there can bemore values in the array.

Success response

Code: 200

Content:

{
"affectedCIs": [
{
"ucmdbId" : [ucmdb_id],
"severity": [severity],
"type": [type],
"properties": {

"property1": "value",
"property2": "value",
...

}
},
...

]
}

The above parameters are described below:

l "affectedCIs". The list of affected CIs identified by the impact analysis. Each affected CI contains
the following fields:

o "ucmdbId" - [ucmdb_id]. The string that represents the ID of an object.

o "severity" - [severity]. The string that represents the severity at which the CI is affected.

o "type" - [type]. The string that specifies the CI type of the affected CI.

o "properties". The properties that were requested in the Payload.

Note: The …(three dots) denotes that there can be 0 or more values.

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 445 of 503

Error response

Code: 400

Content:

{
error: [string]

}

Multiple CMDB Calls

Converting UCMDB IDs to Global Ids

This call converts UCMDB IDs to Global IDs.

URL
/multipleCmdb/convertToGlobalIds

Method
POST

Headers
Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 446 of 503

Request type
JSON

Response type
JSON

URL Parameters
Required: None

Optional: None

Payload

[list of ucmdb_id]

Example:

["40967247acdd869fa52d1f42e4eeb59a", "48981ed7ff877904bbbeb7d5c72069fa"]

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a CI.

Success response
Code: 200

Content:

{
"ids": [
{
ucmdbId: [ucmdb_id],
globalId: [String]
}, ...
]
}

Example:

Code: 200

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 447 of 503

Content:

{
"ids": [
{
"ucmdbId": "4dd87eb2bba2cf59a177662dbb0e7a44",
"globalId": "4dd87eb2bba2cf59a177662dbb0e7a44"
},
{
"ucmdbId": "445519e389143825ad01aeccbf3f50ca",
"globalId": "445519e389143825ad01aeccbf3f50ca"
}
]
}

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a CI.

Error response
Code: 400

Content:

{
error: [string]

}

Notes
The user needs access to SDK permission.

Converting Global IDs to UCMDB IDs

This call converts Global IDs to UCMDB IDs.

URL
/multipleCmdb/convertToUcmdbIds

Method
POST

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 448 of 503

Headers
Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type
JSON

Response type
JSON

URL Parameters
Required: None

Optional: None

Payload

[list of Strings]

Example:

["40967247acdd869fa52d1f42e4eeb59a", "48981ed7ff877904bbbeb7d5c72069fa"]

Note: String represents the Global IDs.

Success response
Code: 200

Content:

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 449 of 503

{
"ids": [
{
ucmdbId: [ucmdb_id],
globalId: [String]
}, ...
]
}

Example:

Code: 200

Content:

{
"ids": [
{
"ucmdbId": "4dd87eb2bba2cf59a177662dbb0e7a44",
"globalId": "4dd87eb2bba2cf59a177662dbb0e7a44"
},
{
"ucmdbId": "445519e389143825ad01aeccbf3f50ca",
"globalId": "445519e389143825ad01aeccbf3f50ca"
}
]
}

Data Types:

[ucmdb_id]

The string that represents the UCMDB ID of a CI.

Note: String represents the Global IDs.

Error response
Code: 400

Content:

{
error: [string]

}

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 450 of 503

Notes
The user needs access to SDK permission.

History Changes

Get Removed CIs

This call returns the list of CIs removed in a specified time frame.

URL
/history/getRemovedCIs

Method
GET

Headers
Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type
None

Response type
JSON

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 451 of 503

URL Parameters
Required:

[from]

The starting time for retrieving the events, measured inmilliseconds. (Long)

[to]

The ending time for retrieving the events, measured inmilliseconds. (Long)

Optional:

[ciType]

The CI Type. (String)

For example:

https://localhost:8443/rest-
api/history/getRemovedCIs?from=1475223669000&to=1475323669000&ciType=host

Payload
None

Success response
Response: 200

Content:

{
"removedCis": [

"495a4faf96729548a2603046dbf7efd9",
"4c21a0fb4d6c0a69b99f34576c0efb67"

]
}

Error response
Status: 404, 500, or 400

Content:

{

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 452 of 503

error: [string]
}

Example:

Code: 404

Content:

{
error: The server was not found.

}

Get Changes

This call retrieves the history changes occurred in a specified time frame.

URL
/history/getChanges

Method
GET

Headers
Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type
None

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 453 of 503

Response type
JSON

URL Parameters
Required:

[from]

The starting time for retrieving the events, measured inmilliseconds. (Long)

[to]

The ending time for retrieving the events, measured inmilliseconds. (Long)

Optional:

[change Type]

The types of changes you want to retrieve. The possible values are: ADD_OBJECT, UPDATE_
OBJECT, REMOVE_OBJECT, ADD_LINK, UPDATE_LINK, REMOVE_LINK, ADD_RELATION,
and REMOVE_RELATION. This parameter can be specifiedmultiple times. (Set)

[id]

The list of UCMDB IDs for which history events should be retrieved. (Set)

For example:

https://localhost:8443/rest-
api/history/getChanges?from=1475323669000&to=1476706069000&changeType=ADD_OBJECT

https://localhost:8443/rest-
api/history/getChanges?from=1475323669000&to=1476706069000&changeType=ADD_
OBJECT&changeType=UPDATE_
OBJECT&id=4d08b8a5e349a7fdba5ba5ff60f47929&id=476948c54e4a86e1a32bb83c41cdc7c5

Payload
None

Success response
Response: 200

Content:

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 454 of 503

{
"history": [

{
"id": "4d08b8a5e349a7fdba5ba5ff60f47929",
"changes": [

{
"time": 1476365233608,
"changer": "User:admin",
"dataStore": "UCMDB-UI",
"changeType": "ADD_OBJECT",
"data": {

"dataId": "4d08b8a5e349a7fdba5ba5ff60f47929",
"type": "nt",
"properties": {

"display_label": "windows-0001",
"track_changes": false,
"data_allow_auto_discovery": true,
"create_time": 1476365233752,
"global_id": "4d08b8a5e349a7fdba5ba5ff60f47929",
"name": "windows-0001",
"lic_type_udf": false,
"default_gateway_ip_address_type": "IPv4",
"is_save_persistency": false,
"lic_type_udi": false,
"data_source": "UCMDB-UI: User:admin",
"root_enableageing": false

}
}

},
{

"time": 1476365768785,
"changer": "User:{UISysadmin:UCMDB},LoggedInUser:

{admin:UCMDB}",
"dataStore": "UCMDB",
"changeType": "UPDATE_OBJECT",
"data": {

"dataId": "4d08b8a5e349a7fdba5ba5ff60f47929",
"type": "nt",
"properties": {

"description": "decription 1"
}

}
},
{

"time": 1476438324892,
"changer": "User:{UISysadmin:UCMDB},LoggedInUser:

{admin:UCMDB}",
"dataStore": "UCMDB",

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 455 of 503

"changeType": "UPDATE_OBJECT",
"data": {

"dataId": "4d08b8a5e349a7fdba5ba5ff60f47929",
"type": "nt",
"properties": {

"bios_source": "cosmos"
}

}
},
{

"time": 1476438334455,
"changer": "User:{UISysadmin:UCMDB},LoggedInUser:

{admin:UCMDB}",
"dataStore": "UCMDB",
"changeType": "UPDATE_OBJECT",
"data": {

"dataId": "4d08b8a5e349a7fdba5ba5ff60f47929",
"type": "nt",
"properties": {

"bios_source": "cosmos-galaxy"
}

}
}

]
},
{

"id": "476948c54e4a86e1a32bb83c41cdc7c5",
"changes": [

{
"time": 1476365263533,
"changer": "User:admin",
"dataStore": "UCMDB-UI",
"changeType": "ADD_OBJECT",
"data": {

"dataId": "476948c54e4a86e1a32bb83c41cdc7c5",
"type": "nt",
"properties": {

"display_label": "windows-0002",
"track_changes": false,
"data_allow_auto_discovery": true,
"create_time": 1476365263534,
"global_id": "476948c54e4a86e1a32bb83c41cdc7c5",
"name": "windows-0002",
"lic_type_udf": false,
"default_gateway_ip_address_type": "IPv4",
"is_save_persistency": false,
"lic_type_udi": false,
"data_source": "UCMDB-UI: User:admin",

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 456 of 503

"root_enableageing": false
}

}
},
{

"time": 1476365784442,
"changer": "User:{UISysadmin:UCMDB},LoggedInUser:

{admin:UCMDB}",
"dataStore": "UCMDB",
"changeType": "UPDATE_OBJECT",
"data": {

"dataId": "476948c54e4a86e1a32bb83c41cdc7c5",
"type": "nt",
"properties": {

"description": "description 2"
}

}
}

]
}

]
}

Error response
Status: 404, 500, or 400

Content:

{
error: [string]

}

Example:

Code: 404

Content:

{
error: The server was not found or the value for changeType is not in the

allowed domain.
}

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 457 of 503

Get Data Layout

This call returns the data layout at the specified date for the CIs that have one of the IDs provided.

URL
/history/getDataLayout

Method
POST

Headers
Required:

Authorization: Bearer <token>

Note: <token> is the token that is returned by the Authentication call.

Example:

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJleHAiOjE0Njc5ODQ5MTcsImN1c3RvbWVyIjoxLCJ
1c2VybmFtZSI6InN5c2FkbWluIn0.Ph8WHtzvpvfuH1j0CtwHqyBhX1uLlfhr0eQQ7m0_gT0

Request type
JSON

Response type
JSON

URL Parameters
Required: none

Optional: none

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 458 of 503

Payload

{
"data": [

{
"date": 1476365233608,

"ciIDs": [
"495a4faf96729548a2603046dbf7efd9",
"476948c54e4a86e1a32bb83c41cdc7c5"

]
},

{
"date" : 1476438324892,
"ciIDs": [

"4d08b8a5e349a7fdba5ba5ff60f47929",
"476948c54e4a86e1a32bb83c41cdc7c5"

]
},
{

"date" : 1476365784442,
"ciIDs": [

"476948c54e4a86e1a32bb83c41cdc7c5"
]

}
],

"layout" : [
"name",
"description",
"bios_tag"

]
}

Success response
Response: 200

Content:

{
"history": [

{
"date": 1478699889366,

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 459 of 503

"data": [
{

"type": "node",
"isObject": true,
"dataId": "4a1c2ec8804ffa44aa2124de5921b8fe",
"properties": {

"name": "node1",
"description": "xxx"

}
}

]
}

]
}

Error response
Status: 404, 500, or 400

Content:

{
error: [string]

}

Example:

Code: 404

Content:

{
error: The server was not found or the value for changeType is not in the

allowed domain.
}

Developer ReferenceGuide
Chapter 12: Universal CMDB REST API

Micro Focus Universal CMDB (10.33) Page 460 of 503

Chapter 13: Data Flow Management Java API
This chapter includes:

Using the Data Flow Management Java API 461

IP RangeManagement API 462

Using the Data Flow Management Java API

Note: Use this chapter in conjunction with the DFM API Javadoc, available in the online
Documentation Library.

This chapter explains how third-party or custom tools can use theMicro Focus Data Flow Management
Java API to manage Data Flow.The API provides methods to:

l Manage credentials. View, add, update, and remove.

l Manage jobs. View status, activate, and deactivate.

l Manage probe ranges. View, add, and update.

l Manage triggers. Add or remove a trigger CI, and add, remove, or disable a trigger TQL.

l View general data. Data on domains and probes.

The following services are available in the Discovery Services package:

l DDMConfigurationService. Services to configure the Data Flow Probes, clusters, IP Ranges,
and Credentials.The Universal Discovery server can be configured with an XML file or via the Data
Flow Probe.

l DDMManagementService. Services to analyze and view the progress, results, and errors of the
Universal Discovery run.

l DDMSoftwareSignatureService. Services to define software items to be discovered by the Data
Flow Probe components. The definitions are system-wide. If more than one Data Flow probe
component is defined, the definitions apply to all of them.

l DDMZoneService. Services tomanage zone-based discovery.

In addition to these services, there are Data Flow Management client APIs, which are used in creating
Jython adapters. For details, see "Developing Jython Adapters" on page 46.

Micro Focus Universal CMDB (10.33) Page 461 of 503

Permissions

The administrator provides login credentials for connecting with the API. The API client needs the user
name and password of an integration user defined in the CMDB. These users do not represent human
users of the CMDB, but rather applications that connect to the CMDB.

In addition, the user must have theAccess to SDK general action permission in order to log in.

Caution: The API client can also work with regular users as long as they have API authentication
permission. However, this option is not recommended.

For details, see "Create an Integration User" on page 332.

IP Range Management API
In the Data Flow Management Java API, a new method importIPRanges() is introduced into the
DDMConfigurationService class in UCMDB version 10.22. This method allows you to perform the
following tasks by using a customized script to manage the IP ranges of specified Probes:

l Overwrite the IP ranges of specified Probes. The IPv4/6, Range, and Type settings of an IP range
aremanageable through this method.

l Assign certain probes in the same domain into a probe list, and then distribute the IP addresses in
the specified ranges evenly to each probe in the group.

Note: Group is a temporary parameter used in this API method to group a set of probes
assigned to the same domain, and to balance the IPs evenly among these probes.

You can perform this task on any computer that can access the UCMDB server. One or both of the
following files aremandatory to set up the work environment on different computers:

l ucmdb-api.jar: On the UCMDB server or on a probe, you only need this file. This file is available for
download from the UCMDB server through the following URL: https://<IP_or_
FQDN>:8443/ucmdb-api/download

l api-client.jar: On a computer other than the UCMDB server or a probe, you need this file in addition
to the ucmdb-api.jar file. This file is available in the following directory on the UCMDB server:
<UCMDB_server>\lib\

For more information about how to use the UCMDB API, refer to the following documentation:

Developer ReferenceGuide
Chapter 13: Data Flow Management Java API

Micro Focus Universal CMDB (10.33) Page 462 of 503

l TheUniversal CMDB API chapter in theUniversal CMDB Developer ReferenceGuide

l API Reference

For a sample script to perform the IP rangemanagement task, see "Sample Script for IP Range
Management API " below.

Note:

l This method does not support Data Flow Probe clusters.

l You can specify the excluded IP ranges in the script. The API will calculate the whole IP
ranges and the excluded IP ranges, and only assign the resulting IP ranges to a probe.

l For both IPv4 and IPv6, youmust specify an IP range with a starting IP address and an ending
IP address in the format of x.x.x.x-x.x.x.x. If you want to specify a single IP address, the
starting IP address and the ending IP address are the same.

l An IP range should not overlap with another IP range in the script or with an IP range in another
existing probe. Otherwise, the IP range will not be imported.

l When you add probe list in the Java API importIPRanges()method, make sure you only add
the discovery probe list. Do not add integration probes (for example, Linux probes or integration
services).

Linux Probes and integration services do not need IP ranges. If you add Linux probes or
integration services, although the IPs in Linux probe or integration services do not display in the
UI, they will be assigned to Linux Probes or integration services.

Sample Script for IP Range Management API
package com.hp.ucmdb.api.client.util;

import com.hp.ucmdb.api.UcmdbService;
import com.hp.ucmdb.api.UcmdbServiceFactory;
import com.hp.ucmdb.api.UcmdbServiceProvider;
import com.hp.ucmdb.api.client.types.IPRangeImpl;
import com.hp.ucmdb.api.client.types.IPRangeWithExcludingImpl;
import com.hp.ucmdb.api.discovery.types.IPRange;

import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

Developer ReferenceGuide
Chapter 13: Data Flow Management Java API

Micro Focus Universal CMDB (10.33) Page 463 of 503

/**
* Created by dingmen on 8/12/2015.
*/
public class UpdateIpRangeTest {

private static final String HOST_NAME = "16.187.189.134";
private static final int HTTP_PORT = 8080;
private static final String HTTPS = "https";
private static final String HTTP = "http";
private static UcmdbService ucmdbService;

public static void main(String[] args) {
testSenario1();

}

private static void testSenario1(){
try {

UcmdbServiceProvider provider = UcmdbServiceFactory.getServiceProvider
(HTTP, HOST_NAME, HTTP_PORT);

ucmdbService = provider.connect(provider.createCredentials("admin",
"admin"), provider.createClientContext("Test"));

HashMap<String, ArrayList<String>> probeLBGroup = new HashMap<String,
ArrayList<String>>();

HashMap<String, ArrayList<IPRange>> IPRangeGroup = new HashMap<String,
ArrayList<IPRange>>();

HashMap<String, ArrayList<String>> domainGroup = new HashMap<String,
ArrayList<String>>();

//put domain name as key in domainGroup, and its value is a list of
groups. 'DefaultDomain' is a existing name in UCMDB .

domainGroup.put("DefaultDomain", new ArrayList<String>());
domainGroup.get("DefaultDomain").add("PG1");

//define 'PG1' as the first group name(The group name can be any other
values) in probeLBGroup ,

//and its value is a list of probe name. 'Probe1' or 'Probe2' should be
existing name in UCMDB .

probeLBGroup.put("PG1", new ArrayList<String>());
probeLBGroup.get("PG1").add("Probe1");
probeLBGroup.get("PG1").add("Probe2");

//Below all ranges are defined in IPRangeGroup for 'PG1' , and they
will balanced distributed to probes in 'PG1'.

IPRangeGroup.put("PG1", new ArrayList<IPRange>());
//should specify ip type 'IPV4/IPV6' , and ip category

'DataCenter/Client' for each range.
IPRangeGroup.get("PG1").add(new IPRangeWithExcludingImpl("1.1.1.1",

"1.1.1.9", IPRange.IPType.IPV4, IPRange.RangeCategory.CLIENT, new
ArrayList<IPRangeImpl>()));

Developer ReferenceGuide
Chapter 13: Data Flow Management Java API

Micro Focus Universal CMDB (10.33) Page 464 of 503

List<IPRangeImpl> excludedRange1=new ArrayList<IPRangeImpl>();
IPRangeGroup.get("PG1").add(new IPRangeWithExcludingImpl("1.1.1.10",

"1.1.1.19", IPRange.IPType.IPV4,IPRange.RangeCategory.DATA_CENTER,
excludedRange1));

excludedRange1.add(new IPRangeImpl
("1.1.1.10","1.1.1.19",IPRange.IPType.IPV4,IPRange.RangeCategory.DATA_CENTER));

excludedRange1.add(new IPRangeImpl
("1.1.1.12","1.1.1.15",IPRange.IPType.IPV4,IPRange.RangeCategory.DATA_CENTER));

IPRangeGroup.get("PG1").add(new IPRangeWithExcludingImpl
("fe80:0:0:0:41f8:4318:2000:80", "fe80:0:0:0:41f8:4318:2000:83",
IPRange.IPType.IPV6,IPRange.RangeCategory.CLIENT, new ArrayList<IPRangeImpl>()));

//below is the second group 'PG2', and assign below 'GP2' range
(1.1.1.20~1.1.1.30) to below 'PG2' probe(Probe3) .

domainGroup.get("DefaultDomain").add("PG2");
probeLBGroup.put("PG2", new ArrayList<String>());
probeLBGroup.get("PG2").add("Probe3");
IPRangeGroup.put("PG2", new ArrayList<IPRange>());
IPRangeGroup.get("PG2").add(new IPRangeWithExcludingImpl("1.1.1.20",

"1.1.1.30", IPRange.IPType.IPV4,IPRange.RangeCategory.DATA_CENTER, new
ArrayList<IPRangeImpl>()));

//the domain group with probe and range group in set to importIPRanges
API to update ip ranges.

ucmdbService.getDDMConfigurationService().importIPRanges(probeLBGroup,
IPRangeGroup, domainGroup);

} catch (Throwable e) {
e.printStackTrace();

}
}

}

Developer ReferenceGuide
Chapter 13: Data Flow Management Java API

Micro Focus Universal CMDB (10.33) Page 465 of 503

Chapter 14: Data Flow Management Web
Service API
This chapter includes:

Data Flow Management Web Service API Overview 466

Conventions 467

Creating theWeb Service Client 467

Call theMicro Focus Data Flow Management Web Service 468

Data Flow Management Methods and Data Structures 468

Code Samples 481

Data Flow Management Web Service API Overview
This chapter explains how third-party or custom tools can use theMicro Focus Data Flow Management
Web Service API to manage Data Flow.

TheMicro Focus Data Flow Management Web Service API is used to integrate applications with
Universal CMDB. The API provides methods to:

l Manage credentials. View, add, update, and remove.

l Manage jobs. View status, activate, and deactivate.

l Manage probe ranges. View, add, and update.

l Manage triggers. Add or remove a trigger CI, and add, remove, or disable a trigger TQL.

l View general data. Data on domains and probes.

Users of theMicro Focus Data Flow Management Web Service should be familiar with:

l The SOAP specification

l An object-oriented programming language such as C++, C# or Java

l Universal CMDB

l Data Flow Management

Note:

Micro Focus Universal CMDB (10.33) Page 466 of 503

l A user must have theRun Legacy API general action permission in order to log in.

l The logged-in user must have theRun Discovery and Integrations general action permission
to access any of themethods.

For full documentation on the available operations, seeUniversal Discovery SchemaReference.
These files are located in the following folder:

<UCMDB root directory>\UCMDBServer\deploy\ucmdb-docs\docs\eng\APIs\DDM_
Schema\webframe.html

Conventions
This chapter uses the following conventions:

l This style Element indicates that an item is an entity in the database or an element defined in the
schema, including structures passed to or returned by methods. Plain text indicates that the item is
being discussed in a general context.

l Data Flow Management elements andmethod arguments are spelled in the case in which they are
specified in the schema. This usually means that a class name or generic reference to an instance
of the class is capitalized. An element or argument to amethod is not capitalized. For example, a
credential is an element of type Credential passed to amethod.

Creating the Web Service Client
Use the following recommended approach to generate theWeb Service client by using Apache Axis2
and XMLBeans:

1. Extract ucmdb_service.aar to a temporary folder.

The ucmdb_service.aar file is available under \hp\UCMDB\UCMDBServer\deploy\axis2\WEB-
INF\services\.

2. Download the axis2-1.1.1-bin.zip file from the following address, and then unpack the file.

http://axis.apache.org/axis2/java/core/download.cgi

3. Run the following command:

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 467 of 503

http://axis.apache.org/axis2/java/core/download.cgi

<axis2-1.1.1 install folder>\bin\wsdl2java -uri <ucmdb_serverice.aar

extract folder>/META-INF/DiscoveryService.wsdl -d xmlbeans -p

com.hp.ucmdb.generated -s -a -o <output folder>

4. Under the <output folder>, run ant Build.xml to generate theWeb Service client jar packages.

Now you can use the generated jar files together with all the jar files under
\hp\UCMDB\UCMDBServer\deploy\axis2\WEB-INF\lib\ to develop codes to call the Data Flow
Management Web Service API.

Call the Micro Focus Data Flow Management Web

Service
TheMicro Focus Data Flow Management Web Service API enables calling server-sidemethods using
standard SOAP programming techniques. If the statement cannot be parsed or if there is a problem
invoking themethod, the API methods throw a SoapFault exception. When a SoapFault exception is
thrown, the service populates one or more of the error message, error code, and exceptionmessage
fields. If there is no error, the results of the invocation are returned.

To call the service, use:

l Protocol: http or https (depending on server configuration)

l URL: <UCMDB server>:8443/axis2/services/DiscoveryService

l Default username: "admin"

SOAP programmers can access theWSDL at:

l axis2/services/DiscoveryService?wsdl

Data Flow Management Methods and Data

Structures
This section lists the Data Flow Management Web Service API methods and data structures, and
provides a brief summary of their uses. For full documentation of the request and response for each
operation, seeUniversal Discovery SchemaReference.

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 468 of 503

This section includes the following topics:

l "Data Structures" below

l "Managing Discovery JobMethods" on the next page

l "Managing Trigger Methods" on page 472

l "Domain and Probe DataMethods" on page 474

l "Credentials DataMethods" on page 477

l "Data RefreshMethods" on page 479

Data Structures

These are some of the data structures used in the Data Flow Management Web Service API.

CIProperties

CIProperties is a collection of collections. Each collection contains properties of a different data type.
For example, there can be a dateProps collection, a strListProps collection, an xmlProps collection,
and so on.

Each type collection contains individual properties of the given type. The names of these properties
elements is the same as the container, but in singular. For example, dateProps contains dateProp
elements. Each property is a name-value pair.

See CIProperties in theHPE Universal Discovery SchemaReference.

IPList

A list of IP elements, each of which contains an IPv4 or IPv6 Address.

See IPList in theUniversal Discovery SchemaReference.

IPRange

An IPRange has two elements, Start and End. Each element contains an Address element, which is
an IPv4 or IPv6 Address.

See IPRange in theUniversal Discovery SchemaReference.

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 469 of 503

Scope

Two IPRanges. Exclude is a collection of IPRanges to exclude from the job. Include is a collection of
IPRanges to include in the job.

See Scope in theUniversal Discovery SchemaReference

Managing Discovery Job Methods

activateJob

Activates the specified job.

See "Code Samples" on page 481.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

JobName The name of the job.

deactivateJob

Deactivates the specified job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

JobName The name of the job.

dispatchAdHocJob

Dispatches a job on the probe ad hoc. The jobmust be active and contain the specified trigger CI.

Input

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 470 of 503

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

JobName The name of the job.

CIID The ID of the trigger CI.

ProbeName The name of the probe.

Timeout In milliseconds

getDiscoveryJobsNames

Returns the list of job names.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

Output

Parameter Comment

strList The list of job names.

isJobActive

Checks whether the job is active.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

JobName The name of the job to check.

Output

Parameter Comment

JobState True if the job is active.

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 471 of 503

Managing Trigger Methods

addTriggerCI

Adds a new trigger CI to the specified job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

JobName The name of the job.

CIID The ID of the trigger CI.

addTriggerTQL

Adds a new trigger TQL to the specified job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

JobName The name of the job.

TqlName The name of the TQL to add.

disableTriggerTQL

Prevents the TQL from triggering the job, but does not permanently remove it from the list of queries
that trigger the job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

JobName The name of the job.

tqlName The name of the TQL.

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 472 of 503

removeTriggerCI

Removes the specified CI from the list of CIs that trigger the job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

JobName The name of the job.

CIID The ID of the trigger CI.

removeTriggerTQL

Removes the specified TQL from the list of queries that trigger the job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

JobName The name of the job.

tqlName The name of the TQL.

setTriggerTQLProbesLimit

Restrict the probes in which the TQL is active in the job to the specified list.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

JobName The name of the job.

tqlName The TQL name.

probesLimit The list of probes for which the TQL is active.

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 473 of 503

getJobTriggerTqls

Get the TQL from the job.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

JobName The name of the job.

Domain and Probe Data Methods

getDomainType

Returns the domain type.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

domainName The name of the domain.

Output

Parameter Comment

domainType The domain type.

getDomainsNames

Returns the names of the current domains.

See "Code Samples" on page 481.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 474 of 503

Output

Parameter Comment

domainNames The list of domain names.

getProbeIPs

Returns the IP addresses of the specified probe.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

domainName The domain to check.

probeName The name of the probe used on that domain.

Output

Parameter Comment

probeIPs The "IPList" of the addresses in the probe.

getProbesNames

Returns the names of the probes in the specified domain.

See "Code Samples" on page 481.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

domainName The domain to check.

Output

Parameter Comment

probesName The list of probes on the domain.

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 475 of 503

getProbeScope

Returns the scope definition of the specified probe.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

domainName The domain to check.

probeName The name of the probe.

Output

Parameter Comment

probeScope The "Scope" of the probe.

isProbeConnected

Checks whether the specified probe is connected.

See "Code Samples" on page 481.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

domainName The domain to check.

probeName The probe to check

Output

Parameter Comment

isConnected True if the probe is connected.

updateProbeScope

Sets the scope of the specified probe, overriding the existing scope.

Input

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 476 of 503

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

domainName The domain.

probeName The probe to update.

newScope The "Scope" to set for the probe.

Credentials Data Methods

addCredentialsEntry

Adds a credentials entry to the specified protocol for the specified domain.

See "Code Samples" on page 481.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

domainName The domain to update.

protocolName The name of the protocol.

credentialsEntryParameters The "CIProperties" collection of the new credentials.

Output

Parameter Comment

credentialsEntryID The CI ID of the new credential entry.

getCredentialsEntriesIDs

Returns the IDs of the credentials defined for the specified protocol.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 477 of 503

Parameter Comment

domainName The domain for which to get the credentials.

protocolName The name of a protocol used on that domain.

Output

Parameter Comment

credentialsEntryIDs The list of credential IDs for the protocol on the domain.

getCredentialsEntry

Returns the credentials defined for the specified protocol. Encrypted attributes are returned empty.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

domainName The domain for which to get the credentials.

protocolName The name of a protocol used on that domain.

credentialsEntryID The credential ID to get.

Output

Parameter Comment

credentialsEntryParameters The "CIProperties" collection of the credentials.

removeCredentialsEntry

Removes the specified credentials from the protocol.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

domainName The domain.

protocolName The name of a protocol used on the domain.

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 478 of 503

Parameter Comment

credentialsEntryID The ID of the credential to remove.

updateCredentialsEntry

Sets new values for properties of the specified credentials entry.

The existing properties are deleted and these properties are set. Any property whose value is not set in
this call is left undefined.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

domainName The domain in which to update credentials.

protocolName The name of a protocol used on the domain.

credentialsEntryID The ID of the credentials to update.

credentialsEntryParameters The "CIProperties" collection to set as properties for the credentials.

Data Refresh Methods

rediscoverCIs

Locates the triggers that discovered the specified CI objects and reruns those triggers. rediscoverCIs
runs asynchronously. Call checkDiscoveryProgress to determine when the rediscovery is complete.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

CmdbIDs Collection of IDs of the objects to rediscover.

Output

Parameter Comment

isSucceed True if the CIs rediscovery succeeded.

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 479 of 503

checkDiscoveryProgress

Returns the progress of themost recent rediscoverCIs call on the specified IDs. The response is a
value between 0-1. When the response is 1, the rediscoverCIs call has completed.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

CmdbIDs Collection of IDs of the objects in the rediscover call to track.

Output

Parameter Comment

progress A completed job has a progress of 1. Jobs that have not completed have a fraction less
than 1.

rediscoverViewCIs

Locates the triggers that created the data to populate the specified view, and reruns those triggers.
rediscoverViewCIs runs asynchronously. Call checkViewDiscoveryProgress to determine when the
rediscovery is complete.

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

viewName The views to check.

Output

Parameter Comment

isSucceed True if CIs rediscovery succeeded.

checkViewDiscoveryProgress

Returns the progress of themost recent rediscoverViewCIs call on the specified view. The response
is a value from 0 to 1. When the response is 1, the rediscoverCIs call has completed.

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 480 of 503

Input

Parameter Comment

cmdbContext For details, see "CmdbContext" on page 353.

viewName The collection of views to check.

Output

Parameter Comment

progress A completed job has a progress of 1. Jobs that have not completed have a fraction less
than 1.

Code Samples
This section provides code samples for the followingmethods:

Managing Discovery JobMethods 481

Managing Trigger Methods 485

Domain and Probe DataMethods 489

Credentials DataMethods 493

Data RefreshMethods 499

Managing Discovery Job Methods
import java.net.URL;
import java.rmi.RemoteException;

import org.apache.axis2.transport.http.HTTPConstants;
import org.apache.axis2.transport.http.HttpTransportProperties;

import com.hp.schemas.ucmdb._1.types.CmdbContext;
import com.hp.schemas.ucmdb.discovery._1.params.ActivateJobRequest;
import com.hp.schemas.ucmdb.discovery._1.params.ActivateJobRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.DeactivateJobRequest;
import com.hp.schemas.ucmdb.discovery._1.params.DeactivateJobRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.DispatchAdHocJobRequest;
import com.hp.schemas.ucmdb.discovery._1.params.DispatchAdHocJobRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetDiscoveryJobsNamesRequest;
import com.hp.schemas.ucmdb.discovery._

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 481 of 503

1.params.GetDiscoveryJobsNamesRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetDiscoveryJobsNamesResponse;
import com.hp.schemas.ucmdb.discovery._
1.params.GetDiscoveryJobsNamesResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.IsJobActiveRequest;
import com.hp.schemas.ucmdb.discovery._1.params.IsJobActiveRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.IsJobActiveResponse;
import com.hp.schemas.ucmdb.discovery._1.params.IsJobActiveResponseDocument;
import com.hp.ucmdb.generated.DiscoveryServiceStub;
import com.hp.ucmdb.generated.UcmdbFault;

public class TestJob {
static final String HOST_NAME = "<my_hostname>";

static final int PORT = 8080;
private static final String PROTOCOL = "http";
private static final String FILE = "/axis2/services/DiscoveryService";
private static final String PASSWORD = "admin";
private static final String USERNAME = "admin";
public static CmdbContext cmdbContext = CmdbContext.Factory.newInstance();

public static void activateJob(String jobName) throws RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("activateJob");
ActivateJobRequest activateJobRequest = ActivateJobRequest.Factory.newInstance

();
activateJobRequest.setCmdbContext(cmdbContext);
activateJobRequest.setJobName(jobName);
ActivateJobRequestDocument activateJobRequestDocument =

ActivateJobRequestDocument.Factory.newInstance();
activateJobRequestDocument.setActivateJobRequest(activateJobRequest);
serviceStub.activateJob(activateJobRequestDocument);

}
public static void deActivateJob(String jobName) throws RemoteException,

UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("deActivateJob");
DeactivateJobRequest deactivateJobRequest =

DeactivateJobRequest.Factory.newInstance();
deactivateJobRequest.setCmdbContext(cmdbContext);
deactivateJobRequest.setJobName(jobName);
DeactivateJobRequestDocument deactivateJobRequestDocument =

DeactivateJobRequestDocument.Factory.newInstance();
deactivateJobRequestDocument.setDeactivateJobRequest(deactivateJobRequest);
serviceStub.deactivateJob(deactivateJobRequestDocument);

}
public static void isJobActive(String jobName) throws RemoteException, UcmdbFault{

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 482 of 503

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("isJobActive");
IsJobActiveRequest isJobActiveRequest = IsJobActiveRequest.Factory.newInstance

();
isJobActiveRequest.setCmdbContext(cmdbContext);
isJobActiveRequest.setJobName(jobName);
IsJobActiveRequestDocument isJobActiveRequestDocumentt =

IsJobActiveRequestDocument.Factory.newInstance();
isJobActiveRequestDocumentt.setIsJobActiveRequest(isJobActiveRequest);
IsJobActiveResponseDocument isJobActiveResponseDocument =

serviceStub.isJobActive(isJobActiveRequestDocumentt);
IsJobActiveResponse isJobActiveResponse =

isJobActiveResponseDocument.getIsJobActiveResponse();
System.out.println(isJobActiveResponse.toString());

}

public static void getDiscoveryJobsNames() throws RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("getDiscoveryJobsNames");
GetDiscoveryJobsNamesRequest getDiscoveryJobsNamesRequest =

GetDiscoveryJobsNamesRequest.Factory.newInstance();
getDiscoveryJobsNamesRequest.setCmdbContext(cmdbContext);
GetDiscoveryJobsNamesRequestDocument getDiscoveryJobsNamesRequestDocument =

GetDiscoveryJobsNamesRequestDocument.Factory.newInstance();
getDiscoveryJobsNamesRequestDocument.setGetDiscoveryJobsNamesRequest

(getDiscoveryJobsNamesRequest);
GetDiscoveryJobsNamesResponseDocument getDiscoveryJobsNamesResponseDocument =

serviceStub.getDiscoveryJobsNames(getDiscoveryJobsNamesRequestDocument);
GetDiscoveryJobsNamesResponse getDiscoveryJobsNamesResponse =

getDiscoveryJobsNamesResponseDocument.getGetDiscoveryJobsNamesResponse();
System.out.println(getDiscoveryJobsNamesResponse.toString());

}
//
public static void dispatchAdHocJob(String probeName,String jobName,String

CIID,Long timeout) throws RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("dispatchAdHocJob");
DispatchAdHocJobRequest dispatchAdHocJobRequest =

DispatchAdHocJobRequest.Factory.newInstance();
dispatchAdHocJobRequest.setCmdbContext(cmdbContext);
dispatchAdHocJobRequest.setProbeName(probeName);
dispatchAdHocJobRequest.setJobName(jobName);
dispatchAdHocJobRequest.setCIID(CIID);
dispatchAdHocJobRequest.setTimeout(timeout);
DispatchAdHocJobRequestDocument dispatchAdHocJobRequestDocument

=DispatchAdHocJobRequestDocument.Factory.newInstance();
dispatchAdHocJobRequestDocument.setDispatchAdHocJobRequest

(dispatchAdHocJobRequest);
serviceStub.dispatchAdHocJob(dispatchAdHocJobRequestDocument);

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 483 of 503

}

public static DiscoveryServiceStub getService() {

DiscoveryServiceStub serviceStub=null;
try {

URL url = new URL(PROTOCOL, HOST_NAME, PORT, FILE);
serviceStub = new DiscoveryServiceStub(url.toString());

HttpTransportProperties.Authenticator auth = new
HttpTransportProperties.Authenticator();

auth.setUsername(USERNAME);
auth.setPassword(PASSWORD);
serviceStub._getServiceClient().getOptions()

.setProperty(HTTPConstants.AUTHENTICATE, auth);

} catch (Exception e) {
e.printStackTrace();

}

return serviceStub;
}

public static void main (String[] args) throws Exception{
//activateJob("Range IPs by ICMP");
//deActivateJob("Range IPs by ICMP");
//isJobActive("Range IPs by ICMP");
//getDiscoveryJobsNames();
//some error
//dispatchAdHocJob("GDLITVM0136","Range IPs by

ICMP","21c90f8a46b3f7bb9aff055b461476a4",10000L);

}

}

Managing Discovery Job Methods

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 484 of 503

Managing Trigger Methods
import java.net.URL;
import java.rmi.RemoteException;

import org.apache.axis2.transport.http.HTTPConstants;
import org.apache.axis2.transport.http.HttpTransportProperties;

import com.hp.schemas.ucmdb._1.types.CmdbContext;
import com.hp.schemas.ucmdb._1.types.StrList;
import com.hp.schemas.ucmdb.discovery._1.params.AddTriggerCIRequest;
import com.hp.schemas.ucmdb.discovery._1.params.AddTriggerCIRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.AddTriggerTQLRequest;
import com.hp.schemas.ucmdb.discovery._1.params.AddTriggerTQLRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.DisableTriggerTQLRequest;
import com.hp.schemas.ucmdb.discovery._1.params.DisableTriggerTQLRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetJobTriggerTqlsRequest;
import com.hp.schemas.ucmdb.discovery._1.params.GetJobTriggerTqlsRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetJobTriggerTqlsResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.RemoveTriggerCIRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.RemoveTriggerTQLRequest;
import com.hp.schemas.ucmdb.discovery._1.params.RemoveTriggerTQLRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.SetTriggerTQLProbesLimitRequest;
import com.hp.schemas.ucmdb.discovery._
1.params.SetTriggerTQLProbesLimitRequestDocument;
import com.hp.ucmdb.generated.DiscoveryServiceStub;
import com.hp.ucmdb.generated.UcmdbFault;

public class TestTriggerCI {

static final String HOST_NAME = "<my_hostname>";
static final int PORT = 8080;
private static final String PROTOCOL = "http";
private static final String FILE = "/axis2/services/DiscoveryService";
private static final String PASSWORD = "admin";
private static final String USERNAME = "admin";
public static CmdbContext cmdbContext = CmdbContext.Factory.newInstance();

public static DiscoveryServiceStub getService() {

DiscoveryServiceStub serviceStub=null;
try {

URL url = new URL(PROTOCOL, HOST_NAME, PORT, FILE);
serviceStub = new DiscoveryServiceStub(url.toString());

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 485 of 503

HttpTransportProperties.Authenticator auth = new
HttpTransportProperties.Authenticator();

auth.setUsername(USERNAME);
auth.setPassword(PASSWORD);
serviceStub._getServiceClient().getOptions()

.setProperty(HTTPConstants.AUTHENTICATE, auth);

} catch (Exception e) {
e.printStackTrace();

}

return serviceStub;
}

public static void main(String[] args) throws Exception, UcmdbFault{
//getJobTriggerTqls("Range IPs by ICMP");
//addTriggerTQL("Range IPs by ICMP","probe_connected_rum");
//removeTriggerTQL("Range IPs by ICMP","probe_connected_rum");
//StrList probesLimit = StrList.Factory.newInstance();
//probesLimit.addStrValue("AMCBTEST02");
//setTriggerTQLProbesLimit("Range IPs by ICMP","probe_connected_

rum",probesLimit);
disableTriggerTQL("Range IPs by ICMP","probe_connected_rum");
//addTriggerCI();

}
public static void addTriggerCI(String jobName,String CIID) throws

RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("addTriggerCI");
AddTriggerCIRequest addTriggerCIRequest =

AddTriggerCIRequest.Factory.newInstance();
addTriggerCIRequest.setCmdbContext(cmdbContext);
addTriggerCIRequest.setJobName(jobName);
AddTriggerCIRequestDocument addTriggerCIRequestDocument =

AddTriggerCIRequestDocument.Factory.newInstance();
addTriggerCIRequestDocument.setAddTriggerCIRequest(addTriggerCIRequest);
serviceStub.addTriggerCI(addTriggerCIRequestDocument);

}
public static void addTriggerTQL(String jobName,String TQLName) throws

RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("addTriggerTQL");
AddTriggerTQLRequest addTriggerTQLRequest =

AddTriggerTQLRequest.Factory.newInstance();
addTriggerTQLRequest.setCmdbContext(cmdbContext);

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 486 of 503

addTriggerTQLRequest.setJobName(jobName);
addTriggerTQLRequest.setTqlName(TQLName);
AddTriggerTQLRequestDocument addTriggerTQLRequestDocument =

AddTriggerTQLRequestDocument.Factory.newInstance();
addTriggerTQLRequestDocument.setAddTriggerTQLRequest(addTriggerTQLRequest);
serviceStub.addTriggerTQL(addTriggerTQLRequestDocument);

}
public static void disableTriggerTQL(String jobName,String TQLName) throws

RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("DisableTriggerTQL");
DisableTriggerTQLRequest disableTriggerTQLRequest =

DisableTriggerTQLRequest.Factory.newInstance();
disableTriggerTQLRequest.setCmdbContext(cmdbContext);
disableTriggerTQLRequest.setJobName(jobName);
disableTriggerTQLRequest.setTqlName(TQLName);
DisableTriggerTQLRequestDocument disableTriggerTQLRequestDocument =

DisableTriggerTQLRequestDocument.Factory.newInstance();
disableTriggerTQLRequestDocument.setDisableTriggerTQLRequest

(disableTriggerTQLRequest);
serviceStub.disableTriggerTQL(disableTriggerTQLRequestDocument);

}
public static void removeTriggerTQL(String jobName,String TQLName) throws

RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("removeTriggerTQL");
RemoveTriggerTQLRequest removeTriggerTQLRequest

=RemoveTriggerTQLRequest.Factory.newInstance();
removeTriggerTQLRequest.setCmdbContext(cmdbContext);
removeTriggerTQLRequest.setJobName(jobName);
removeTriggerTQLRequest.setTqlName(TQLName);
RemoveTriggerTQLRequestDocument removeTriggerTQLRequestDocument

=RemoveTriggerTQLRequestDocument.Factory.newInstance();
removeTriggerTQLRequestDocument.setRemoveTriggerTQLRequest

(removeTriggerTQLRequest);
serviceStub.removeTriggerTQL(removeTriggerTQLRequestDocument);

}

public static void getJobTriggerTqls(String jobName) throws RemoteException,
UcmdbFault{

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("getJobTriggerTqls");
GetJobTriggerTqlsRequest getJobTriggerTqlsRequest

=GetJobTriggerTqlsRequest.Factory.newInstance();
getJobTriggerTqlsRequest.setCmdbContext(cmdbContext);
getJobTriggerTqlsRequest.setJobName(jobName);

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 487 of 503

GetJobTriggerTqlsRequestDocument getJobTriggerTqlsRequestDocument
=GetJobTriggerTqlsRequestDocument.Factory.newInstance();

getJobTriggerTqlsRequestDocument.setGetJobTriggerTqlsRequest
(getJobTriggerTqlsRequest);

GetJobTriggerTqlsResponseDocument getJobTriggerTqlsResponseDocument =
serviceStub.getJobTriggerTqls(getJobTriggerTqlsRequestDocument);

System.out.println(getJobTriggerTqlsResponseDocument.getGetJobTriggerTqlsResponse
().toString());

}

public static void removeTriggerCI(String jobName,String CIID) throws
RemoteException, UcmdbFault{

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("removeTriggerCI");
AddTriggerCIRequest addTriggerCIRequest =

AddTriggerCIRequest.Factory.newInstance();
addTriggerCIRequest.setCmdbContext(cmdbContext);
addTriggerCIRequest.setJobName(jobName);
RemoveTriggerCIRequestDocument removeTriggerCIRequestDocument

=RemoveTriggerCIRequestDocument.Factory.newInstance();
removeTriggerCIRequestDocument.setRemoveTriggerCIRequest(addTriggerCIRequest);
serviceStub.removeTriggerCI(removeTriggerCIRequestDocument);

}

public static void setTriggerTQLProbesLimit(String jobName,String tqlName,StrList
probesLimit) throws RemoteException, UcmdbFault{

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("setTriggerTQLProbesLimit");
SetTriggerTQLProbesLimitRequest setTriggerTQLProbesLimitRequest =

SetTriggerTQLProbesLimitRequest.Factory.newInstance();
setTriggerTQLProbesLimitRequest.setCmdbContext(cmdbContext);
setTriggerTQLProbesLimitRequest.setJobName(jobName);
setTriggerTQLProbesLimitRequest.setTqlName(tqlName);
setTriggerTQLProbesLimitRequest.setProbesLimit(probesLimit);
SetTriggerTQLProbesLimitRequestDocument setTriggerTQLProbesLimitRequestDocument

=SetTriggerTQLProbesLimitRequestDocument.Factory.newInstance();
setTriggerTQLProbesLimitRequestDocument.setSetTriggerTQLProbesLimitRequest

(setTriggerTQLProbesLimitRequest);
serviceStub.setTriggerTQLProbesLimit(setTriggerTQLProbesLimitRequestDocument);

}

}

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 488 of 503

Domain and Probe Data Methods
import java.net.URL;
import java.rmi.RemoteException;

import org.apache.axis2.transport.http.HTTPConstants;
import org.apache.axis2.transport.http.HttpTransportProperties;

import com.hp.schemas.ucmdb._1.types.CmdbContext;
import com.hp.schemas.ucmdb.discovery._1.params.GetDomainTypeRequest;
import com.hp.schemas.ucmdb.discovery._1.params.GetDomainTypeRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetDomainTypeResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetDomainsNamesRequest;
import com.hp.schemas.ucmdb.discovery._1.params.GetDomainsNamesRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetDomainsNamesResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetProbeIPsRequest;
import com.hp.schemas.ucmdb.discovery._1.params.GetProbeIPsRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetProbeIPsResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetProbeScopeRequest;
import com.hp.schemas.ucmdb.discovery._1.params.GetProbeScopeRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetProbeScopeResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetProbesNamesRequest;
import com.hp.schemas.ucmdb.discovery._1.params.GetProbesNamesRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetProbesNamesResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.IsProbeConnectedRequest;
import com.hp.schemas.ucmdb.discovery._1.params.IsProbeConnectedRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.IsProbeConnectedResponceDocument;
import com.hp.schemas.ucmdb.discovery._1.params.UpdateProbeScopeRequest;
import com.hp.schemas.ucmdb.discovery._1.params.UpdateProbeScopeRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.types.IP;
import com.hp.schemas.ucmdb.discovery._1.types.IPRange;
import com.hp.schemas.ucmdb.discovery._1.types.Scope;
import com.hp.schemas.ucmdb.discovery._1.types.Scope.Include;
import com.hp.ucmdb.generated.DiscoveryServiceStub;
import com.hp.ucmdb.generated.UcmdbFault;

public class TestDomain {
static final String HOST_NAME = "<my_hostname>";

static final int PORT = 8080;
private static final String PROTOCOL = "http";
private static final String FILE = "/axis2/services/DiscoveryService";
private static final String PASSWORD = "admin";
private static final String USERNAME = "admin";
public static CmdbContext cmdbContext = CmdbContext.Factory.newInstance();

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 489 of 503

public static DiscoveryServiceStub getService() {

DiscoveryServiceStub serviceStub=null;
try {

URL url = new URL(PROTOCOL, HOST_NAME, PORT, FILE);
serviceStub = new DiscoveryServiceStub(url.toString());

HttpTransportProperties.Authenticator auth = new
HttpTransportProperties.Authenticator();

auth.setUsername(USERNAME);
auth.setPassword(PASSWORD);
serviceStub._getServiceClient().getOptions()

.setProperty(HTTPConstants.AUTHENTICATE, auth);

} catch (Exception e) {
e.printStackTrace();

}

return serviceStub;
}

public static void getDomainsNames() throws RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("GetDomainsNames");
GetDomainsNamesRequest getDomainsNamesRequest =

GetDomainsNamesRequest.Factory.newInstance();
getDomainsNamesRequest.setCmdbContext(cmdbContext);

GetDomainsNamesRequestDocument getDomainsNamesRequestDocument =
GetDomainsNamesRequestDocument.Factory.newInstance();

getDomainsNamesRequestDocument.setGetDomainsNamesRequest
(getDomainsNamesRequest);

GetDomainsNamesResponseDocument getDomainsNamesResponseDocument =
serviceStub.getDomainsNames(getDomainsNamesRequestDocument);

System.out.println(getDomainsNamesResponseDocument.getGetDomainsNamesResponse
().toString());

}

public static void getProbesNames(String domainName) throws RemoteException,
UcmdbFault{

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("GetProbesNames");
GetProbesNamesRequest getProbesNamesRequest =

GetProbesNamesRequest.Factory.newInstance();
getProbesNamesRequest.setCmdbContext(cmdbContext);

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 490 of 503

getProbesNamesRequest.setDomainName(domainName);
GetProbesNamesRequestDocument getProbesNamesRequestDocument =

GetProbesNamesRequestDocument.Factory.newInstance();
getProbesNamesRequestDocument.setGetProbesNamesRequest(getProbesNamesRequest);
GetProbesNamesResponseDocument getProbesNamesResponseDocument =

serviceStub.getProbesNames(getProbesNamesRequestDocument);
System.out.println(getProbesNamesResponseDocument.getGetProbesNamesResponse

().toString());

}
public static void getProbeScope(String domainName,String probeName) throws

RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("GetProbeScope");
GetProbeScopeRequest getProbeScopeRequest =

GetProbeScopeRequest.Factory.newInstance();
getProbeScopeRequest.setCmdbContext(cmdbContext);
getProbeScopeRequest.setDomainName(domainName);
getProbeScopeRequest.setProbeName(probeName);
GetProbeScopeRequestDocument getProbeScopeRequestDocument =

GetProbeScopeRequestDocument.Factory.newInstance();
getProbeScopeRequestDocument.setGetProbeScopeRequest(getProbeScopeRequest);
GetProbeScopeResponseDocument getProbeScopeResponseDocument =

serviceStub.getProbeScope(getProbeScopeRequestDocument);
System.out.println(getProbeScopeResponseDocument.getGetProbeScopeResponse

().toString());

}
public static void getProbeIPs(String domainName,String probeName) throws

RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("GetProbeIPs");
GetProbeIPsRequest getProbeIPsRequest = GetProbeIPsRequest.Factory.newInstance

();
getProbeIPsRequest.setCmdbContext(cmdbContext);
getProbeIPsRequest.setDomainName(domainName);
getProbeIPsRequest.setProbeName(probeName);
GetProbeIPsRequestDocument getProbeIPsRequestDocument =

GetProbeIPsRequestDocument.Factory.newInstance();
getProbeIPsRequestDocument.setGetProbeIPsRequest(getProbeIPsRequest);
GetProbeIPsResponseDocument getProbeIPsResponseDocument =

serviceStub.getProbeIPs(getProbeIPsRequestDocument);
System.out.println(getProbeIPsResponseDocument.getGetProbeIPsResponse().toString

());

}
public static void getDomainType(String domainName) throws RemoteException,

UcmdbFault{
DiscoveryServiceStub serviceStub = getService();

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 491 of 503

cmdbContext.setCallerApplication("GetProbeScope");
GetDomainTypeRequest getDomainTypeRequest =

GetDomainTypeRequest.Factory.newInstance();
getDomainTypeRequest.setCmdbContext(cmdbContext);
getDomainTypeRequest.setDomainName(domainName);
GetDomainTypeRequestDocument getDomainTypeRequestDocument =

GetDomainTypeRequestDocument.Factory.newInstance();
getDomainTypeRequestDocument.setGetDomainTypeRequest(getDomainTypeRequest);
GetDomainTypeResponseDocument getDomainTypeResponseDocument =

serviceStub.getDomainType(getDomainTypeRequestDocument);
System.out.println(getDomainTypeResponseDocument.getGetDomainTypeResponse

().toString());

}

public static void isProbeConnected(String domainName,String probeName) throws
RemoteException, UcmdbFault{

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("isProbeConnected");
IsProbeConnectedRequest isProbeConnectedRequest =

IsProbeConnectedRequest.Factory.newInstance();
isProbeConnectedRequest.setCmdbContext(cmdbContext);
isProbeConnectedRequest.setDomainName(domainName);
isProbeConnectedRequest.setProbeName(probeName);
IsProbeConnectedRequestDocument isProbeConnectedRequestDocument =

IsProbeConnectedRequestDocument.Factory.newInstance();
isProbeConnectedRequestDocument.setIsProbeConnectedRequest

(isProbeConnectedRequest);
IsProbeConnectedResponceDocument IsProbeConnectedResponceDocument =

serviceStub.isProbeConnected(isProbeConnectedRequestDocument);
System.out.println(IsProbeConnectedResponceDocument.getIsProbeConnectedResponce

());

}
public static void updateProbeScope(String domainName,String probeName,Scope

newScope) throws RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("UpdateProbeScope");
UpdateProbeScopeRequest updateProbeScopeRequest =

UpdateProbeScopeRequest.Factory.newInstance();
updateProbeScopeRequest.setCmdbContext(cmdbContext);
updateProbeScopeRequest.setDomainName(domainName);
updateProbeScopeRequest.setProbeName(probeName);
updateProbeScopeRequest.setNewScope(newScope);
UpdateProbeScopeRequestDocument updateProbeScopeRequestDocument =

UpdateProbeScopeRequestDocument.Factory.newInstance();
updateProbeScopeRequestDocument.setUpdateProbeScopeRequest

(updateProbeScopeRequest);
serviceStub.updateProbeScope(updateProbeScopeRequestDocument);

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 492 of 503

}

public static void main(String[] args) throws Exception{
//getDomainsNames();
//getProbesNames("DefaultDomain");
//getProbeScope("DefaultDomain","AMCBTEST02");
//isProbeConnected("DefaultDomain","AMCBTEST02");
//getProbeIPs("DefaultDomain","AMCBTEST02");
//getDomainType("DefaultDomain");

}

}

Credentials Data Methods
import java.net.URL;
import java.rmi.RemoteException;

import org.apache.axis2.transport.http.HTTPConstants;
import org.apache.axis2.transport.http.HttpTransportProperties;

import com.hp.schemas.ucmdb._1.types.BytesProp;
import com.hp.schemas.ucmdb._1.types.BytesProps;
import com.hp.schemas.ucmdb._1.types.CIProperties;
import com.hp.schemas.ucmdb._1.types.CmdbContext;
import com.hp.schemas.ucmdb._1.types.StrProp;
import com.hp.schemas.ucmdb._1.types.StrProps;
import com.hp.schemas.ucmdb.discovery._1.params.AddCredentialsEntryRequest;
import com.hp.schemas.ucmdb.discovery._1.params.AddCredentialsEntryRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.AddCredentialsEntryResponse;
import com.hp.schemas.ucmdb.discovery._
1.params.AddCredentialsEntryResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetCredentialsEntriesIDsRequest;
import com.hp.schemas.ucmdb.discovery._
1.params.GetCredentialsEntriesIDsRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetCredentialsEntriesIDsResponse;
import com.hp.schemas.ucmdb.discovery._
1.params.GetCredentialsEntriesIDsResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.GetCredentialsEntryRequest;
import com.hp.schemas.ucmdb.discovery._1.params.RemoveCredentialsEntryRequest;

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 493 of 503

import com.hp.schemas.ucmdb.discovery._
1.params.RemoveCredentialsEntryRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.UpdateCredentialsEntryRequest;
import com.hp.schemas.ucmdb.discovery._
1.params.UpdateCredentialsEntryRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.UpdateProbeScopeRequest;
import com.hp.schemas.ucmdb.discovery._1.params.UpdateProbeScopeRequestDocument;
import com.hp.ucmdb.generated.DiscoveryServiceStub;
import com.hp.ucmdb.generated.UcmdbFault;

public class TestCredentials{
static final String HOST_NAME = "<my_hostname>";

static final int PORT = 8080;
private static final String PROTOCOL = "http";
private static final String FILE = "/axis2/services/DiscoveryService";
private static final String PASSWORD = "admin";
private static final String USERNAME = "admin";
public static CmdbContext cmdbContext = CmdbContext.Factory.newInstance();

public static DiscoveryServiceStub getService() {

DiscoveryServiceStub serviceStub=null;
try {

URL url = new URL(PROTOCOL, HOST_NAME, PORT, FILE);
serviceStub = new DiscoveryServiceStub(url.toString());

HttpTransportProperties.Authenticator auth = new
HttpTransportProperties.Authenticator();

auth.setUsername(USERNAME);
auth.setPassword(PASSWORD);
serviceStub._getServiceClient().getOptions()

.setProperty(HTTPConstants.AUTHENTICATE, auth);

} catch (Exception e) {
e.printStackTrace();

}

return serviceStub;
}

public static void addCreds(String user, String userlabel, String domain, String
ipaddress,String protocol, String password) {

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("addCred");
CIProperties newCredsProperties = CIProperties.Factory.newInstance();

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 494 of 503

String [] args = {user,userlabel,domain,ipaddress};

newCredsProperties.setStrProps(strAddProps(args));

newCredsProperties.setBytesProps(addByteProp(password));

AddCredentialsEntryRequest addReq = AddCredentialsEntryRequest.Factory
.newInstance();

AddCredentialsEntryRequestDocument addReqDoc =
AddCredentialsEntryRequestDocument.Factory

.newInstance();

addReq.setCmdbContext(cmdbContext);

addReq.setProtocolName(protocol);
addReq.setDomainName("DefaultDomain");
addReq.setCredentialsEntryParameters(newCredsProperties);
addReqDoc.setAddCredentialsEntryRequest(addReq);

try {
AddCredentialsEntryResponseDocument addResDoc =

serviceStub.addCredentialsEntry(addReqDoc);
AddCredentialsEntryResponse addRes =

addResDoc.getAddCredentialsEntryResponse();
System.out.println(addRes.getCredentialsEntryID().toString());

} catch (RemoteException e) {

e.printStackTrace();
} catch (Exception e) {

e.printStackTrace();
}

}

public static void updateCreds(String user, String userlabel, String domain,
String ipaddress,String protocol, String password,

String credid) {

DiscoveryServiceStub serviceStub = getService();

//set cmdbcontext
cmdbContext.setCallerApplication("addCred");
// create CI properties

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 495 of 503

CIProperties newCredsProperties = CIProperties.Factory.newInstance();

String [] args = {user,userlabel,domain,ipaddress,credid};

newCredsProperties.setBytesProps(addByteProp(password));
newCredsProperties.setStrProps(strAddProps(args));

UpdateCredentialsEntryRequestDocument upReqDoc =
UpdateCredentialsEntryRequestDocument.Factory

.newInstance();
UpdateCredentialsEntryRequest upReq = UpdateCredentialsEntryRequest.Factory

.newInstance();

upReq.setDomainName("DefaultDomain");
upReq.setProtocolName("ntadminprotocol");
upReq.setCmdbContext(cmdbContext);
upReq.setCredentialsEntryID(credid);
upReq.setCredentialsEntryParameters(newCredsProperties);

upReqDoc.setUpdateCredentialsEntryRequest(upReq);

try {
serviceStub.updateCredentialsEntry(upReqDoc);

} catch (RemoteException e) {

e.printStackTrace();
} catch (Exception e) {

e.printStackTrace();
}

}

public static StrProps strAddProps(String args[]) {
StrProps sP = StrProps.Factory.newInstance();

if (args.length ==5){
StrProp proAddress = sP.addNewStrProp();
proAddress.setName("cm_credential_id");
proAddress.setValue(args[4]);

}

StrProp username = sP.addNewStrProp();
username.setName("protocol_username");
username.setValue(args[0]);

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 496 of 503

StrProp userLabel = sP.addNewStrProp();
userLabel.setName("user_label");
userLabel.setValue(args[1]);

StrProp proAddress = sP.addNewStrProp();
proAddress.setName("protocol_netaddress");
proAddress.setValue(args[3]);

StrProp proDomain = sP.addNewStrProp();
proDomain.setName("ntadminprotocol_ntdomain");
proDomain.setValue(args[2]);

return sP;

}

public static void getCreds(String user, String userlabel, String domain,
String ipaddress,String protocol, String password) {

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("getCred");
CIProperties newCredsProperties = CIProperties.Factory.newInstance();

GetCredentialsEntryRequest addReq = GetCredentialsEntryRequest.Factory
.newInstance();

GetCredentialsEntriesIDsRequest getIDReq =
GetCredentialsEntriesIDsRequest.Factory.newInstance();

GetCredentialsEntriesIDsRequestDocument getIDReqDoc =
GetCredentialsEntriesIDsRequestDocument.Factory.newInstance();

addReq.setCmdbContext(cmdbContext);
getIDReq.setCmdbContext(cmdbContext);

addReq.setProtocolName(protocol);
getIDReq.setProtocolName(protocol);

addReq.setDomainName("DefaultDomain");
getIDReq.setDomainName("DefaultDomain");

getIDReqDoc.setGetCredentialsEntriesIDsRequest(getIDReq);

try {
GetCredentialsEntriesIDsResponseDocument

getCredentialsEntriesIDsResponseDocument = serviceStub.getCredentialsEntriesIDs
(getIDReqDoc);

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 497 of 503

GetCredentialsEntriesIDsResponse getCredentialsEntriesIDsResponse =
getCredentialsEntriesIDsResponseDocument.getGetCredentialsEntriesIDsResponse();

for (String id :
getCredentialsEntriesIDsResponse.getCredentialsEntryIDs().getStrValueArray()) {

System.out.println(id);
}

} catch (RemoteException e) {

e.printStackTrace();
} catch (Exception e) {

e.printStackTrace();
}

}

public static BytesProps addByteProp(String password){

byte[] baytdizi = password.getBytes();

BytesProps bProps = BytesProps.Factory.newInstance();
BytesProp bprop =bProps.addNewBytesProp();

bprop.setName("protocol_password");
bprop.setValue(baytdizi);
return bProps;

}

public static void removeCredentialsEntry(String domainName,String
protocolName,String credentialsEntryID) throws RemoteException, UcmdbFault {

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("RemoveCredentialsEntry");
RemoveCredentialsEntryRequest removeCredentialsEntryRequest =

RemoveCredentialsEntryRequest.Factory.newInstance();
removeCredentialsEntryRequest.setCmdbContext(cmdbContext);
removeCredentialsEntryRequest.setDomainName(domainName);
removeCredentialsEntryRequest.setProtocolName(protocolName);
removeCredentialsEntryRequest.setCredentialsEntryID(credentialsEntryID);
RemoveCredentialsEntryRequestDocument removeCredentialsEntryRequestDocument =

RemoveCredentialsEntryRequestDocument.Factory.newInstance();
removeCredentialsEntryRequestDocument.setRemoveCredentialsEntryRequest

(removeCredentialsEntryRequest);
serviceStub.removeCredentialsEntry(removeCredentialsEntryRequestDocument);

}
public static void main(String[] args) throws Exception {

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 498 of 503

getCreds
("melo","userlabelll","DefaultDomain","11.11.11.11","ntadminprotocol","passw");

//addCreds
("melo","userlabelll","DefaultDomain","11.11.11.11","ntadminprotocol","passw");

//100_1_CMS
//updateCreds("meli", "newlabel","DefaultDomain", "22.22.22.22",

"ntadminprotocol", "passss","32_1_CMS");
removeCredentialsEntry("DefaultDomain","ntadminprotocol","");

}

}

Data Refresh Methods
import java.net.URL;
import java.rmi.RemoteException;

import org.apache.axis2.transport.http.HTTPConstants;
import org.apache.axis2.transport.http.HttpTransportProperties;

import com.hp.schemas.ucmdb._1.types.CmdbContext;
import com.hp.schemas.ucmdb._1.types.StrList;
import com.hp.schemas.ucmdb.discovery._1.params.CheckDiscoveryProgressRequest;
import com.hp.schemas.ucmdb.discovery._
1.params.CheckDiscoveryProgressRequestDocument;
import com.hp.schemas.ucmdb.discovery._
1.params.CheckDiscoveryProgressResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.CheckViewDiscoveryProgressRequest;
import com.hp.schemas.ucmdb.discovery._
1.params.CheckViewDiscoveryProgressRequestDocument;
import com.hp.schemas.ucmdb.discovery._
1.params.CheckViewDiscoveryProgressResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.RediscoverCIsRequest;
import com.hp.schemas.ucmdb.discovery._1.params.RediscoverCIsRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.RediscoverCIsResponseDocument;
import com.hp.schemas.ucmdb.discovery._1.params.RediscoverViewCIsRequest;
import com.hp.schemas.ucmdb.discovery._1.params.RediscoverViewCIsRequestDocument;
import com.hp.schemas.ucmdb.discovery._1.params.RediscoverViewCIsResponseDocument;
import com.hp.ucmdb.generated.DiscoveryServiceStub;
import com.hp.ucmdb.generated.UcmdbFault;

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 499 of 503

public class TestDataRefresh {
static final String HOST_NAME = "<my_hostname>";

static final int PORT = 8080;
private static final String PROTOCOL = "http";
private static final String FILE = "/axis2/services/DiscoveryService";
private static final String PASSWORD = "admin";
private static final String USERNAME = "admin";
public static CmdbContext cmdbContext = CmdbContext.Factory.newInstance();

public static DiscoveryServiceStub getService() {

DiscoveryServiceStub serviceStub=null;
try {

URL url = new URL(PROTOCOL, HOST_NAME, PORT, FILE);
serviceStub = new DiscoveryServiceStub(url.toString());

HttpTransportProperties.Authenticator auth = new
HttpTransportProperties.Authenticator();

auth.setUsername(USERNAME);
auth.setPassword(PASSWORD);
serviceStub._getServiceClient().getOptions()

.setProperty(HTTPConstants.AUTHENTICATE, auth);

} catch (Exception e) {
e.printStackTrace();

}

return serviceStub;
}

public static void rediscoverCIs(StrList cmdbIDs) throws RemoteException,
UcmdbFault{

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("RediscoverCIs");
RediscoverCIsRequest rediscoverCIsRequest =

RediscoverCIsRequest.Factory.newInstance();
rediscoverCIsRequest.setCmdbContext(cmdbContext);
rediscoverCIsRequest.setCmdbIDs(cmdbIDs);
RediscoverCIsRequestDocument rediscoverCIsRequestDocument =

RediscoverCIsRequestDocument.Factory.newInstance();
rediscoverCIsRequestDocument.setRediscoverCIsRequest(rediscoverCIsRequest);
RediscoverCIsResponseDocument rediscoverCIsResponseDocument =

serviceStub.rediscoverCIs(rediscoverCIsRequestDocument);
System.out.println(rediscoverCIsResponseDocument.getRediscoverCIsResponse

().toString());

}

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 500 of 503

public static void rediscoverViewCIs(String viewName) throws RemoteException,
UcmdbFault{

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("rediscoverViewCIs");
RediscoverViewCIsRequest rediscoverViewCIsRequest =

RediscoverViewCIsRequest.Factory.newInstance();
rediscoverViewCIsRequest.setCmdbContext(cmdbContext);
rediscoverViewCIsRequest.setViewName(viewName);
RediscoverViewCIsRequestDocument rediscoverViewCIsRequestDocument =

RediscoverViewCIsRequestDocument.Factory.newInstance();
rediscoverViewCIsRequestDocument.setRediscoverViewCIsRequest

(rediscoverViewCIsRequest);
RediscoverViewCIsResponseDocument rediscoverViewCIsResponseDocument =

serviceStub.rediscoverViewCIs(rediscoverViewCIsRequestDocument);
System.out.println

(rediscoverViewCIsResponseDocument.getRediscoverViewCIsResponse().toString());

}

public static void checkDiscoveryProgress(StrList cmdbIDs) throws RemoteException,
UcmdbFault{

DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("RediscoverCIs");
CheckDiscoveryProgressRequest checkDiscoveryProgressRequest =

CheckDiscoveryProgressRequest.Factory.newInstance();
checkDiscoveryProgressRequest.setCmdbContext(cmdbContext);
checkDiscoveryProgressRequest.setCmdbIDs(cmdbIDs);
CheckDiscoveryProgressRequestDocument checkDiscoveryProgressRequestDocument =

CheckDiscoveryProgressRequestDocument.Factory.newInstance();
checkDiscoveryProgressRequestDocument.setCheckDiscoveryProgressRequest

(checkDiscoveryProgressRequest);
CheckDiscoveryProgressResponseDocument checkDiscoveryProgressResponseDocument =

serviceStub.checkDiscoveryProgress(checkDiscoveryProgressRequestDocument);
System.out.println

(checkDiscoveryProgressResponseDocument.getCheckDiscoveryProgressResponse
().toString());

}
public static void checkViewDiscoveryProgresss(String viewName) throws

RemoteException, UcmdbFault{
DiscoveryServiceStub serviceStub = getService();
cmdbContext.setCallerApplication("RediscoverCIs");
CheckViewDiscoveryProgressRequest checkViewDiscoveryProgressRequest =

CheckViewDiscoveryProgressRequest.Factory.newInstance();
checkViewDiscoveryProgressRequest.setCmdbContext(cmdbContext);
checkViewDiscoveryProgressRequest.setViewName(viewName);
CheckViewDiscoveryProgressRequestDocument

checkViewDiscoveryProgressRequestDocument =

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 501 of 503

CheckViewDiscoveryProgressRequestDocument.Factory.newInstance();
checkViewDiscoveryProgressRequestDocument.setCheckViewDiscoveryProgressRequest

(checkViewDiscoveryProgressRequest);
CheckViewDiscoveryProgressResponseDocument

checkViewDiscoveryProgressResponseDocument =
serviceStub.checkViewDiscoveryProgress(checkViewDiscoveryProgressRequestDocument);

System.out.println
(checkViewDiscoveryProgressResponseDocument.getCheckViewDiscoveryProgressResponse
().toString());

}
public static void main(String[] args) throws RemoteException, Exception{

StrList cmdbIDs = StrList.Factory.newInstance();
cmdbIDs.addStrValue("");
rediscoverCIs(cmdbIDs);

}

}

Developer ReferenceGuide
Chapter 14: Data Flow Management Web Service API

Micro Focus Universal CMDB (10.33) Page 502 of 503

Send documentation feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Developer Reference Guide (Universal CMDB 10.33)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a webmail client, and
send your feedback to cms-doc@microfocus.com.

We appreciate your feedback!

Universal CMDB (10.33) Page 503 of 503

mailto:cms-doc@microfocus.com?subject=Feedback on Developer Reference Guide (Universal CMDB 10.33)

	Part I: Creating Discovery and Integration Adapters
	Chapter 1: Adapter Development and Writing
	Adapter Development and Writing Overview
	Content Creation
	The Adapter Development Cycle
	Data Flow Management and Integration
	Associating Business Value with Discovery Development
	Researching Integration Requirements

	Developing Integration Content
	Developing Discovery Content
	Discovery Adapters and Related Components
	Separating Adapters

	Implement a Discovery Adapter
	Step 1: Create an Adapter
	Step 2: Assign a Job to the Adapter
	Step 3: Create Jython Code
	Configure Remote Process Execution

	Chapter 2: Developing Jython Adapters
	HPE Data Flow Management API Reference
	Create Jython Code
	Use External Java JAR Files within Jython
	Execution of the Code
	Modifying Out-of-the-Box Scripts
	Structure of the Jython File
	Imports
	Main Function – DiscoveryMain
	Functions Definition

	Results Generation by the Jython Script
	The ObjectStateHolder Syntax
	Sending Large Amounts of Data

	The Framework Instance
	Finding the Correct Credentials (for Connection Adapters)
	Handling Exceptions from Java
	Troubleshooting Migration from Jython Version 2.1 to 2.5.3

	Support Localization in Jython Adapters
	Add Support for a New Language
	Change the Default Language
	Determine the Character Set for Encoding
	Define a New Job to Operate With Localized Data
	Decode Commands Without a Keyword
	Work with Resource Bundles
	API Reference

	Record DFM Code
	Jython Libraries and Utilities

	Chapter 3: Error Messages
	Error Messages Overview
	Error-Writing Conventions
	Error Severity Levels

	Chapter 4: Mapping Consumer-Provider Dependencies
	Dependency Discovery Overview
	Providers and Consumers
	Service Connection Point
	Configuration Signatures
	Dependency Mapping Flow

	Configuration Signature Files
	Structure of a Configuration Signature File
	Variables

	Search Connection Strings
	Search connection strings from command line
	Search connection strings from configuration documents
	Generate Service Connection Points

	Chapter 5: Developing Generic Database Adapters
	Generic Database Adapter Overview
	TQL Queries for the Generic Database Adapter
	Reconciliation
	Hibernate as JPA Provider
	Prepare for Adapter Creation
	Prepare the Adapter Package
	Configure the Adapter – Minimal Method
	Configure the adapter.conf File
	Example: Populating a Node and IP Address using the Simplified Method

	Configure the Adapter – Advanced Method
	Implement a Plug-in
	Deploy the Adapter
	Edit the Adapter
	Create an Integration Point
	Create a View
	Calculate the Results
	View the Results
	View Reports
	Enable Log Files
	Use Eclipse to Map Between CIT Attributes and Database Tables
	Adapter Configuration Files
	The adapter.conf File
	The simplifiedConfiguration.xml File
	The orm.xml File
	The reconciliation_types.txt File
	The reconciliation_rules.txt File (for backwards compatibility)
	The transformations.txt File
	The discriminator.properties File
	The replication_config.txt File
	The fixed_values.txt File
	The Persistence.xml File
	Connect to Database Using NT Authentication
	Configure the Persistence.xml File for the SCCM Integration to Use NTLM Authe...

	Out-of-the-Box Converters
	Plug-ins
	Configuration Examples
	Adapter Log Files
	External References
	Troubleshooting and Limitations – Developing Generic Database Adapters

	Chapter 6: Developing Java Adapters
	Federation Framework Overview
	Adapter and Mapping Interaction with the Federation Framework
	Federation Framework for Federated TQL Queries
	Interactions between the Federation Framework, Server, Adapter, and Mapping E...
	Federation Framework Flow for Population
	Adapter Interfaces
	Debug Adapter Resources
	Add an Adapter for a New External Data Source
	Create a Sample Adapter
	XML Configuration Tags and Properties
	The DataAdapterEnvironment Interface
	OutputStream openResourceForWriting(String resourceName) throws FileNotFoundE...
	InputStream openResourceForReading(String resourceName) throws FileNotFoundEx...
	Properties openResourceAsProperties(String propertiesFile) throws IOException;
	String openResourceAsString(String resourceName) throws IOException;
	public void saveResourceFromString(String relativeFileName, String value) thr...
	boolean resourceExists(String resourceName);
	boolean deleteResource(String resourceName);
	Collection<String> listResourcesInPath(String path);
	DataAdapterLogger getLogger();
	DestinationConfig getDestinationConfig();
	int getChunkSize();
	int getPushChunkSize();
	ClassModel getLocalClassModel();
	CustomerInformation getLocalCustomerInformation();
	Object getSettingValue(String name);
	Map<String, Object> getAllSettings();
	boolean isMTEnabled();
	String getUcmdbServerHostName();

	Chapter 7: Developing Push Adapters
	Developing and Deploying Push Adapters
	Build an Adapter Package
	Troubleshooting
	TQL Best Practices for Push Adapters

	Create Mappings
	Build a Mapping File
	Prepare the Mapping Files

	Write Jython Scripts
	Support Differential Synchronization
	Generic XML Push Adapter SQL Queries
	Generic Web Service Push Adapter
	Mapping File Reference
	Mapping File Schema
	Mapping Results Schema
	Customization

	Chapter 8: Developing Generic Adapters
	Instance Sync
	Achieving Data Push using the Generic Adapter
	Push Overview
	The Mapping File
	The Groovy Traveler
	Write Groovy Scripts
	Implement PushAdapterConnector Interface

	Achieving Data Population using the Generic Adapter
	The Population Framework Architecture
	Main Artifacts involved in Population
	Population TQL Queries
	Population Mapping Files
	Automatic Link Population
	Manual Link Population
	The Population Connector
	Population Request Input
	Population Request Output

	Population Adapter Modes
	Explicit External ID Mapping
	Global ID Pushback

	Achieving Data Federation using the Generic Adapter
	Federation Mapping Approach
	Generic Adapter Federation API
	Generic Adapter Connector Interface for Federation
	Supported Federation Queries

	How to Set Up Federation
	Configure the Adapter Settings
	Set Up Static Federation TQL Queries
	Federation Setup Example

	Sample Data
	Incident Federation
	Incident Related to Node Federation
	Incident Related to Node and Business Service Federation

	Mapping Conventions

	Reconciliation
	Generic Adapter API
	Resource Locator APIs
	Create a Generic Adapter Package
	Build an Adapter Package
	Population TQL Queries
	Sample Package

	Differences Between Push and Population Mapping
	How to Troubleshoot and Debug Using Generic Adapter Log Files
	Adapters Using the Generic Adapter Framework
	Generic Adapter XML Schema Reference

	Part II: Using APIs
	Chapter 9: Introduction to APIs
	APIs Overview

	Chapter 10: Universal CMDB API
	Conventions
	Using the Universal CMDB API
	General Structure of an Application
	Put the API Jar File in the Classpath
	Create an Integration User
	UCMDB API Use Cases
	Performance Improvement with a Bidirectional GlobalID - UcmdbID Mapping Cache
	Examples

	Chapter 11: Universal CMDB Web Service API
	Conventions
	Micro Focus Universal CMDB (UCMDB) Web Service API Overview
	Getting Started with Universal CMDB Web Service
	How to Generate the Java Web Service Client Jar
	How to Write a Simple Java Web Service Client for UCMDB

	Call the Universal CMDB Web Service
	Query the CMDB
	Update the CMDB
	Query the UCMDB Class Model
	getClassAncestors
	getAllClassesHierarchy
	getCmdbClassDefinition

	Query for Impact Analysis
	UCMDB General Parameters
	UCMDB Output Parameters
	UCMDB Query Methods
	executeTopologyQueryByNameWithParameters
	executeTopologyQueryWithParameters
	getChangedCIs
	getCINeighbours
	getCIsByID
	getCIsByType
	getFilteredCIsByType
	getQueryNameOfView
	getTopologyQueryExistingResultByName
	getTopologyQueryResultCountByName
	pullTopologyMapChunks
	releaseChunks

	UCMDB Update Methods
	addCIsAndRelations
	addCustomer
	deleteCIsAndRelations
	removeCustomer
	updateCIsAndRelations

	UCMDB Impact Analysis Methods
	calculateImpact
	getImpactPath
	getImpactRulesByNamePrefix

	Actual State Web Service API
	UCMDB Web Service API Use Cases
	Examples

	Chapter 12: Universal CMDB REST API
	Deployment and Configuration
	Standalone Deployment
	Configuration

	Using the REST API
	Authorization
	REST API Endpoint
	Tips
	A Usage Example
	Generate Customizable Change Report
	Overview
	How to Use

	Step By Step: How to Retrieve CIs Using REST API

	Reference
	Authenticate
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response
	Notes

	Sample Data Model
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response

	Insert Topology
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response
	Note

	Get CI
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Call example
	Success response
	Error response
	Note

	Update CI
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response
	Note

	Delete CI
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response
	Note

	Generate Change Report
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response

	Get Related CIs
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response
	Note

	Get Relation
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Call example
	Success response
	Error response
	Note

	Update Relation
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response
	Note

	Delete Relation
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response
	Note

	Sample Topology Query
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response

	Execute Query By Name
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response
	Note

	Execute Query By Definition
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response
	Note

	Run Impact Analysis
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response

	Multiple CMDB Calls
	Converting UCMDB IDs to Global Ids
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response
	Notes

	Converting Global IDs to UCMDB IDs
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response
	Notes

	History Changes
	Get Removed CIs
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response

	Get Changes
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response

	Get Data Layout
	URL
	Method
	Headers
	Request type
	Response type
	URL Parameters
	Payload
	Success response
	Error response

	Chapter 13: Data Flow Management Java API
	Using the Data Flow Management Java API
	IP Range Management API
	Sample Script for IP Range Management API

	Chapter 14: Data Flow Management Web Service API
	Data Flow Management Web Service API Overview
	Conventions
	Creating the Web Service Client
	Call the Micro Focus Data Flow Management Web Service
	Data Flow Management Methods and Data Structures
	Data Structures
	Managing Discovery Job Methods
	Managing Trigger Methods
	Domain and Probe Data Methods
	Credentials Data Methods
	Data Refresh Methods

	Code Samples
	Managing Discovery Job Methods
	Managing Trigger Methods
	Domain and Probe Data Methods
	Credentials Data Methods
	Data Refresh Methods

	Send documentation feedback

